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Abstract

Performance characterization of stereo methods is
mandatory to decide which algorithm is useful for which ap-
plication. Prevalent benchmarks mainly use the root mean
squared error (RMS) with respect to ground truth disparity
maps to quantify algorithm performance.

We show that the RMS is of limited expressiveness for
algorithm selection and introduce the HCI Stereo Metrics.
These metrics assess stereo results by harnessing three se-
mantic cues: depth discontinuities, planar surfaces, and
fine geometric structures. For each cue, we extract the rele-
vant set of pixels from existing ground truth. We then apply
our evaluation functions to quantify characteristics such as
edge fattening and surface smoothness.

We demonstrate that our approach supports practition-
ers in selecting the most suitable algorithm for their ap-
plication. Using the new Middlebury dataset, we show
that rankings based on our metrics reveal specific algo-
rithm strengths and weaknesses which are not quantified by
existing metrics. We finally show how stacked bar charts
and radar charts visually support multidimensional perfor-
mance evaluation. An interactive stereo benchmark based
on the proposed metrics and visualizations is available at:
http://hci.iwr.uni-heidelberg.de/stereometrics

1. Introduction

Disparity maps computed from stereo image pairs often
serve as crucial input for higher level vision tasks such as
object detection, 3D reconstruction, and image based ren-
dering, which are in turn used in applications such as driver
assistance [31] and computer assisted surgery [24].

Fueled by the renowned Middlebury benchmark [34],
stereo matching algorithms have made tremendous progress
in the past decade. Since then, stereo benchmarks have
become increasingly challenging, diverse and realistic
with datasets such as the new Middlebury dataset [33],
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Figure 1: The same three algorithms A1-A3 rank differ-
ently, depending on which of our proposed performance
metrics is used. For example, A1 is “the best algorithm”
according to the widely used RMS measure. Yet, A1 yields
the lowest performance at depth discontinuities. The col-
umn rankings show that our metrics allow for a more ex-
pressive and semantically intuitive assessment of stereo re-
sults with respect to depth discontinuities, planar surfaces,
and fine structures. (Black denotes occluded regions.)

KITTI [10], HeiSt [20] and the new SINTEL stereo data [5].
Top ranking algorithms on these benchmarks have long left
behind purely pixel-based approaches. Instead, they hy-
pothesize on local geometry, including segment-wise plane
fitting [16], explicit support for slanted and curved sur-
faces [2, 39] as well as integrating sophisticated shape priors
and object recognition [3, 4, 12]. Even though this evolution
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towards higher-level reasoning started more than ten years
ago, performance evaluation in the stereo community still
mainly works with purely pixelwise comparison of disparity
differences. The two prevalent metrics are 1) RMS, which
denotes the root mean squared pixelwise disparity differ-
ence to a given ground truth disparity (GT) and 2) BadPix,
the fraction of pixels whose disparity error exceeds a certain
threshold, commonly set to 1 or 2 pixels.

Given this situation, our goal is to let stereo evaluation
catch up with the progress of the stereo algorithms it is sup-
posed to assess. Yet, introducing novel metrics for stereo
evaluation is only justified if these metrics foster new valu-
able insights and complement the established metrics RMS
and BadPix. On the one hand, the established metrics al-
ready fulfill many requirements for good performance met-
rics as they are widely applicable, easy to compute, inde-
pendent of image dimensions, and commonly accepted. On
the other hand, metrics which average over all image pix-
els cannot account for the fact that input pixels for stereo
applications are neither spatially independent nor equally
important or equally challenging.

In the Middlebury Stereo Evaluation v.31, Scharstein and
Hirschmüller address this issue by using binary masks for
occluded pixels and linear image weights for the overall
ranking. We build upon this idea and further flesh out the
information given in existing GT disparity maps. We auto-
matically extract GT pixel subsets of geometric structures
at semantically meaningful image regions such as planar
surfaces. These subsets can be extracted from different
GT datasets and applied to dense depth maps generated by
stereo or other reconstruction methods.

Our contribution is threefold:

1. We propose the HCI Stereo Metrics, a novel set of
nine semantically intuitive metrics which characterize
stereo performance at depth discontinuities, planar sur-
faces, and fine structures (Section 3).

2. We re-evaluate recent Middlebury submissions, re-
veal previously unquantified algorithm properties, and
demonstrate how metric combinations and multidi-
mensional visualizations can be used to optimize for
application-specific requirements (Section 4).

3. We provide source code for our evaluation framework
and publish an interactive benchmarking website2.

2. Related Work
The state-of-the-art performance evaluation method for

stereo algorithms clearly consists of comparing RMS scores
achieved on the Middlebury [33, 34] and KITTI [10]
datasets with the published scores on the respective bench-
mark websites. Both benchmarks provide scores computed

1http://vision.middlebury.edu/stereo/eval3
2http://hci.iwr.uni-heidelberg.de/stereometrics

on full, non-occluded and occluded pixel subsets. Middle-
bury v.2 additionally provides scores for pixel subsets at
depth discontinuities.

Looking from a broader perspective, performance eval-
uation for correspondence problems tends to be either very
theoretical or very application-specific [8, 19].

On the theoretical side, Barnard and Fischler defined
a comprehensive set of characteristics ranging from ac-
curacy and reliability to domain sensitivity and computa-
tional complexity [1]. Maimone and Shafer analyzed which
performance characteristics can be assessed on test setups
ranging from empirical uncontrolled environments over en-
gineered test data to pure mathematical analysis [25]. Har-
alick suggested sound statistical performance characteriza-
tion with random perturbations of the algorithm input [13].
Despite their mathematical universality, most of these eval-
uation methods are hardly feasible for stereo evaluation in
current research and real-world scenarios because they of-
ten require exact and comprehensive models of the algo-
rithms, problem domains, and input data.

On the application-oriented side, a variety of evaluation
methods has been proposed, such as for pedestrian or lane
detection in driver assistance scenarios [9, 17, 27, 31].
Maier-Hein et al. proposed evaluation metrics for stereo
accuracy, robustness, point density and computation time in
laparoscopic surgery [23, 24]. Further specialized evalua-
tion methods were proposed with regard to immersive vi-
sualization for tele-presence [29], video surveillance sys-
tems [37], and imaging parameter dependence on Mars mis-
sions [18]. Those methods accomplish their specific pur-
pose very well but the problem-specific insights are often
not easily transferable to other domains.

Our goal is to find a good trade-off between those two
areas of research. We aim at developing theoretically sound
general purpose metrics which are nonetheless easily appli-
cable to existing benchmark datasets and parameterizable to
suit the specific needs of different applications.

In the stereo community, Kostková et al. reasoned that
performance evaluation should take the algorithm purpose
into account and showed that evaluation must not be lim-
ited to basic pixel averaging [21]. Instead, they discriminate
matching errors such as the false negative rate and occlu-
sion boundary inaccuracy. Furthermore, we borrow ideas
from the segmentation and object detection communities to
include higher level reasoning about the image structure:
Margolin et al. proposed evaluation metrics for foreground
maps which incorporate the fact that pixels are neither spa-
tially independent nor equally important [26]. Özdemir et
al. developed performance metrics for object detection eval-
uation which are sensitive to boundary and fragmentation
errors [30]. Yasnoff et al. state that good metrics for scene
segmentation should incorporate error categories for differ-
ent picture elements and have adjustable costs [38].

http://vision.middlebury.edu/stereo/eval3
http://hci.iwr.uni-heidelberg.de/stereometrics


3. Novel Metrics for Stereo Evaluation
In this Section, we introduce theoretical principles for

the quantitative evaluation of stereo performance at depth
discontinuities, planar surfaces, and fine structures. For
each of these geometric entities, we first motivate their
relevance for stereo applications, then briefly explain how
we obtain the respective ground truth subsets, and finally
propose distinct metrics to formally quantify stereo perfor-
mance. For each proposed metric, 0 denotes a perfect result
and higher values indicate lower performance. The methods
to obtain the relevant pixel subsets are only briefly outlined
in this Section. Further details are given in the supplemental
material.

3.1. Depth Discontinuities

Depth discontinuities are defined as image regions where
the disparity differences between adjacent pixels exceed
a certain threshold. Sharp and accurate disparity edges
are important for applications such as object detection and
tracking [15]. Yet, depth discontinuity areas are challeng-
ing and error-prone due to occlusion effects and either the
smoothness terms of global stereo algorithms or the local
support windows of local algorithms.

We propose metrics to quantify three phenomena at
depth discontinuities: foreground fattening, foreground
thinning, and fuzziness. Figure 2 depicts schematic illus-
trations of these phenomena together with actual disparity
maps and visualizations of our metrics.

To quantify the described characteristics, we define
Ω ⊂ N2 as the set of pixels of a given image. We then
defineMd ⊂ Ω as the subset of pixels which are located at
high gradients of the ground truth disparity map Dgt. By
linearly following local gradient directions on both sides of
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Figure 2: Stereo algorithms yield very different perfor-
mance at depth discontinuities (middle row). With our met-
rics (bottom row), we quantify the degree of a) edge fatten-
ing, b) thinning and c) fuzziness using geometric clues ex-
tracted from GT disparity maps. The GT disparity and pixel
subsets used for the evaluation are illustrated in Figure 3.

a) GT disparity of 

    Middl. Playroom 

c) 𝐷𝑏: BG disparities  

    propagated into FG   

b) pixel subsets at  

    disparity edges  

Figure 3: To quantify edge thinning and fattening, we auto-
matically extract ground truth subsets (b) for depth discon-
tinuities (white), nearby foreground objects (blue), and the
adjacent background (orange). We further create extrapo-
lated disparity maps where nearby background disparities
are propagated into the foreground (c) and vice versa.

the discontinuity and applying median filtering, we obtain
the pixel subsetsMf andMb (shown in Figure 3.b). They
denote the foreground and background areas on either side
of the discontinuity. We further introduce the extrapolated
disparity maps Df and Db. For Db, those disparities of
Mb which are closest to the discontinuity are propagated
intoMf along the local gradient directions (see Figure 3.c).

D1. Foreground Fattening. We quantify foreground
fattening by defining Mfat as the subset of pixels, whose
estimated disparity Da(~x) is closer to the extrapolated fore-
ground Df (~x) than to the actual background Dgt(~x), i.e.:

Mfat = {~x ∈Mb : |Da(~x)−Dgt(~x)| > |Da(~x)−Df (~x)|}
(1)

The degree of foreground fattening Dfat ∈ [0, 1] is then
defined as the cardinality ofMfat normalized by the total
number of considered pixels:

Dfat = |Mfat| / |Mb| (2)

D2. Foreground Thinning. Similarly, we quantify fore-
ground thinning by defining the subset of pixels whose es-
timated disparity Da(~x) is closer to the extrapolated back-
ground Db(~x) than to the actual foreground Dgt(~x), i.e.:

Mthin = {~x ∈Mf : |Da(~x)−Dgt(~x)| > |Da(~x)−Db(~x)|}
(3)

The normalized Dthin ∈ [0, 1] is then defined as:

Dthin = |Mthin| / |Mf | (4)

D3. Fuzziness. Algorithm results with sharp edges yield
strong disparity gradients close to depth discontinuities and
smaller gradients at more distant pixels. Thus, we com-
pute G = ‖∇Dgt‖ − ‖∇Da‖, the differences of absolute
disparity gradient magnitudes between the GT and the algo-
rithm disparity map. We penalize the differences weighted
by their distance to the depth discontinuity. We use the com-
mon distance metric dist(~x,M) = min~xi∈M ‖~x− ~xi‖ to



find the closest element in the set of edge area pixels
Me =Md ∪Mf ∪Mb. Furthermore, we define:

f(~x) =

{
|G(~x)|·dist(~x,Md), if G(~x) < 0

G(~x) · dist(~x,Ω \Me), otherwise
(5)

which penalizes overly strong gradients by their distance to
discontinuities and overly soft gradients by their closeness.
Finally, we quantify the fuzziness of discontinuities as:

Dfuz =
1

|Me|
∑

~x∈Me

f(~x) (6)

3.2. Planar Surfaces

Reconstructed planar surfaces are used with very dif-
ferent requirements among stereo applications like image-
based rendering or driver assistance. While some applica-
tions care about the correct principal orientation, others re-
quire the exact distance or prefer smooth but slightly tilted
planes over more accurate yet uneven planes with artifacts.

A common strategy among many stereo algorithms is to
fit local planes or splines to some sort of superpixels [16,
35, 39]. Their parametrization often is a trade-off between
locally accurate fits with jumps between the superpixels or
smoother yet less accurate results.

We propose three metrics to quantify the described char-
acteristics of planar surfaces: bumpiness, offset, and lo-
cal misorientation (compare Figure 4). To quantify the
proposed characteristics, we use RANSAC to robustly fit
planes to connected regions of homogeneous gradient direc-
tions in Dgt. With P = {p0, ..., pm}, we denote the set of
m fitted planes in disparity space, defined in point-normal
form pi = (~ni, Pi). The set of pixels whose disparity values
belong to the fitted planes is denoted asMp.

P1: Bumpiness. Disparity maps at planar surfaces
should ideally have homogeneous gradients and hence a
constant second derivative. To quantify bumpiness, we
therefore compute the second derivative of the algorithm re-
sult Da using the Laplacian ∆ and denote the metric as:

Pbump =
1

|Mp|
∑

~x∈Mp

|∆Da(~x)| (7)

Pbump is 0 if all gradients of the estimated disparity map
are smooth and bigger than 1 for strong bumpiness.

P2: Offset. To quantify the offset, we consider all ele-
ments inMp and compute the Euclidean distance d( ~X, p)

of each 3D point ~X = (x, y,Da(x, y)) to its corresponding
plane p = (~n, P ):

Poff =
1

|Mp|
∑
pi∈P

∑
~x∈Mpi

d( ~X, pi) (8)
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Figure 4: Reconstructing planar surfaces such that they are
smooth as well as correctly located and oriented is chal-
lenging for stereo algorithms. Our metrics quantify that the
stereo result on the Middlebury v.3 Playtable displayed in b)
has locally smooth areas which suffer from inaccurate ori-
entation leading to locally increasing offsets from the true
plane. In c) the local orientation is only slightly off for some
patches but their relative offset to the plane leads to signifi-
cant jumps between them.

P3: Local Misorientation. To quantify the misorienta-
tion in Da, we estimate the local surface orientation at each
element inMp by fitting a plane to its 5× 5 neighborhood
using standard least squares. With ~na(~x) denoting the es-
timated unit surface normal of Da at ~x, we compute the
average angle difference to the GT unit normal ~ni as:

Porient =
1

|Mp|
∑
pi∈P

∑
~x∈Mpi

^(~na(~x), ~ni) (9)

Values for Porient range from 0◦ for perfect normals to 90◦

for surfaces which are orthogonal to the GT plane.

3.3. Fine Structures

Reconstructing depth at fine, elongated structures of
small horizontal extent is challenging for stereo algorithms.
In the trade-off between minimizing artifacts and preserving
fine structures, the latter are often sacrificed for smooth dis-
parities at larger objects. But reconstructing fine structures
is essential for obstacle detection in autonomous navigation
and medical instrument detection in laparoscopic surgery.

Metrics averaging over the entire image are very tolerant
against such errors, as the structures make up just a small
fraction of the image. We propose three metrics to quantify
algorithm performance at fine structures: porosity, fragmen-
tation, and detail fattening (see Figure 5).

To quantify algorithm performance at fine structures, we
define the subset Ms denoting all pixels which belong to
vertical fine structures. We obtain this subset by shifting
positive and negative gradients of Dgt towards each other
and by keeping regions with high overlap. Since many
stereo applications primarily care about the detection of



a) porosity b) fragmentation c) detail fattening 

d
is

p
. 

m
et

ri
cs

 

RMS 33.86 34.15 23.50 36.04 21.07 23.10 

Fpor 1.87 2.66 0.53 1.06 0.35 0.00 

Ffrag 0.50 0.00 0.00 0.67 0.00 0.00 

Ffat 0.00 0.00 0.03 0.09 0.06 0.11 

Figure 5: Top: Stereo algorithms produce very different re-
sults at fine structures. For these regions, our metrics visual-
ize (Middle) and quantify (Bottom) porosity, fragmentation
and detail fattening (lower values are better). Both results
in a) detect a comparable amount of the structure. Yet, the
left result is distributed over the entire structure, yielding a
better value for the sampling metric Fpor.

fine structures but are rather tolerant about their exact dis-
tance, we further define the pixel subset Ma for correctly
detected fine structure elements in Da. This set includes all
pixels whose disparity differences are within a given error
tolerance to Dgt.

F1: Porosity. Given a fixed number of correctly detected
structure pixels, their spatial distribution can make a big dif-
ference when estimating the shape of a structure. As shown
in Figure 5.a small fragments which are distributed over the
entire structure may be preferred over a connected block
which misses half of the structure. We quantify this char-
acteristic by penalizing big missing parts of fine structures.
For each missing structure element inMm = Ms \ Ma,
we compute the logarithmic distance to the closest correct
structure element inMa:

Fpor =
1

|Ms|
∑

~x∈Mm

log(1 + dist(~x,Ma)) (10)

F2: Fragmentation. Fine structures which are frag-
mented into multiple substantial parts can be misleading
for applications like object recognition. We quantify the
fragmentation of Ma for each structure by computing the
amount of 8-connected components. Normalized by the
number of GT structures, fragmentation is quantified as:

Ffrag =
1

|S|
∑
s∈S

(1− 1

|Fs|
) (11)

where S is the set of ground truth structures and Fs the set
of estimated fragments for each structure s ∈ S. Ffrag is 0,
if the algorithm produces a single component per struc-
ture and closer to 1 with an increasing number of fragments.

F3: Detail Fattening. Similarly to Dfat for edge fatten-
ing, we quantify the extent to which pixels left and right of
fine structures, denoted asMn, are erroneously closer to the
extrapolated structure Dn than to the background Dgt. This
is particularly relevant as fine structures often appear as part
of grids which tend to be estimated as solid objects.With:

Mdfat = {~x ∈Mn : |Da(~x)−Dgt(~x)| > |Da(~x)−Dn(~x)|}
(12)

the degree of detail fattening is defined as:

Ffat = |Mdfat| / |Mn| (13)

4. Experimental Validation
In this Section we perform a threefold validation of our

proposed evaluation metrics. After describing the experi-
mental setup, we first test the expressiveness and specificity
of our individual metrics on recent submissions to the Mid-
dlebury benchmark. We then introduce visualization meth-
ods to demonstrate the feasibility of multidimensional per-
formance analysis. Finally, we validate whether our metrics
are orthogonal to the established RMS and BadPix metrics.

4.1. Experimental Setup

Our experiments are based on the new Middlebury
benchmark v.3 which is split into 15 test and 15 training
images. Upon submission to the evaluation page, algorithm
results on the training images are made publically avail-
able in full resolution. For our experiments, we drop im-
ages with intentionally imperfect illumination or rectifica-
tion (PianoL, Playtable, MotorcycleE) and keep the remain-
ing 12 images. As stereo results we use the highest res-
olution submission of each of the 13 available algorithms,
namely BSM [40], Cens5 [15], ELAS [11], IDR [22], LCU3,
LDSM for LAMC DSM [36], LPS [35], MeshS3, SGBM14,
SGBM24, SGM [14], SNCC [7], and TSGO [28]. In line
with Middlebury, we use dense stereo results and evalu-
ate on full resolution. We also exclude occluded pixels, an
image boundary of max(20, 0.01 ∗ imgwidth) pixels and
those pixels where Dgt was marked as invalid.

4.2. Qualitative Metric Evaluation

In this Section, we exemplarily test how much the rank-
ing defined by our metrics correlates with the intuitive rank-
ing of the respective characteristics at test.

Depth Discontinuities Figure 6 depicts three stereo re-
sults for the Adirondack image ranked by their performance
at edge thinning and fuzziness. The ranking by thinning
corresponds well to the intuitive assessment of the disparity
edges, particularly at the left side of the back rest. Similarly,
edge fuzziness corresponds with the amount of artefacts in
all three stereo results, particularly at the arm rest.

3anonymous submission
4www.opencv.org - implementation of SGM [14]

www.opencv.org
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Figure 6: Top: Analyzed for edge thinning, the algorithms
LDSM, SNCC, SGM rank best from left to right with 0.01,
0.05, and 0.13 for Dthin. Bottom: Analyzed for edge fuzzi-
ness, their relative order changes to SNCC, SGM, LDSM
with 0.63, 0.72, and 0.75 for Dfuz .

Planar Surfaces The disparity maps depicted in Fig-
ure 4 show that stereo results at planar surfaces indeed per-
form well at one surface metric whilst performing lower at
another. From left to right the stereo results are LPS, TSGO,
and MeshS. With an average angle difference of 9.52◦ on
the entire subsetMp, LPS achieves more accurate surface
orientations than TSGO with 20.03◦. Yet in terms of sur-
face bumpiness, TSGO ranks better with a value of 0.45 as
compared to 1.82 for LPS.

Fine Structures From left to right, Figure 5 depicts dis-
parity maps of the algorithms LCU, LDSM, IDR, MeshS,
BSM and Cens5, which are taken from the Pipes image.
Below, we show pairwise visualizations of the metrics Fpor,
Ffrag, and Ffat, together with the metric scores for each al-
gorithm. Clearly, Cens5 has the best sampling which is cor-
rectly quantified by Fpor = 0. Interesting to note are the first
two algorithm results. With 33.86 and 34.15 they have very
similar RMS values but the first result supports a much bet-
ter reconstruction of the structure, which is correctly quan-
tified by the lower Fpor metric of 1.87 as compared to 2.66.
Similarly, the values for Ffrag and Ffat correspond well to
the intuitive ranking of the displayed disparity maps.

4.3. Comparison of Algorithm Performance

Combined algorithm performance is ideally evaluated on
a range of representative images. Since images have differ-
ent content and difficulty, benchmarks such as Middlebury
v.3 apply weights to normalize metric values across test im-
ages. Our metrics are naturally normalized across images
as they only consider specific subsets on each image. The
upper bar chart in Figure 7 illustrates linearly combined per-
formance metrics for three algorithms averaged over all test
images. Cens5 shows the best overall performance and is
best at planar surfaces. SGBM1 has a lower overall perfor-
mance but it is more sensitive to detecting fine structures.

Weights for individual metrics can easily be adjusted to

meet the priorities of specific application domains. For in-
stance, augmented reality applications in computer assisted
minimally-invasive surgery require accurate reconstruction
of the poses of medical instruments [6]. As shown in Fig-
ure 8, this includes detecting fine structures such as sutures,
which are very challenging for stereo algorithms [23].

The lower chart in Figure 7 illustrates how relative rank-
ings change when performance at fine structures is given a
higher weight. According to the new ranking on our test
data, SGBM1 would be a better choice for applications in
computer-assisted surgery than BSM or Cens5.

A multidimensional analysis is useful in situations where
algorithm performance must be thoroughly assessed; in
such cases a single combined performance scalar is often
insufficient. For instance, researchers publishing a new
stereo algorithm with particular focus on depth discontinu-
ities would ideally be able to show quantitatively that their
algorithm performs better at discontinuities and maintains
good scores at the remaining characteristics. Using radar
charts as depicted in Figure 9, different algorithms can be
compared with regard to multiple performance characteris-
tics based on their relative ranking and their absolute scores.
In our case, lower values in the center represent the highest
performance and algorithms further outside rank lower.

Figure 7: Top: Among the depicted algorithms Cens5 has
the best overall performance (shortest bar). It is particularly
good at planar surfaces. Bottom: For applications where
fine structures are important, relative metric weights differ
such that other algorithms like SGBM1 are better suited.

Figure 8: Reconstructing fine structures is both essential
and challenging for stereo applications in computer assisted
surgery. Even state-of-the-art algorithms [32] suffer from
poor reconstruction of sutures and medical instruments.



Figure 9 depicts algorithm performance for the image
ArtL using RMS, Bad1.0, Bad4.0, and the three proposed
metrics for fine structures. Interestingly, the algorithms
SGM, LCU, and TSGO rank similar in RMS but show very
different performance at fine structures. SGM achieves the
best BadPix percentages, the lowest detail fattening and lit-
tle porosity but it suffers from relatively strong fragmenta-
tion. By contrast, LCU yields no fragmentation at all and
yields good performance at all the other metrics. Hence,
SGM would be the best choice for applications which are
robust against fragmentation of fine structures whereas LCU
would be the better overall choice. It is further interesting
to note that algorithms like SGBM1 and LPS have a much
higher RMS on the ArtL image but are among the best per-
forming algorithms for sampling fine structures.
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Figure 9: With radar charts, multiple performance dimen-
sions can be evaluated at the same time. SGM and LCU
yield very similar RMS scores (lower values in the center
are better). Yet, as shown on the disparity maps and quanti-
fied by Ffrag and Fpor on the chart, LCU features less frag-
mentation whereas SGM yields better structure sampling.

4.4. Orthogonality of Metrics

To evaluate whether our metrics are complementary to
the existing metrics, we check to what extent the metrics are
mutually correlated on the 12 training images and 13 algo-
rithm results. Figure 10 plots algorithm performance with
different metrics against each other. The transparency and
direction of the lines denote the degree and orientation of
linear correlations. We use the Jadeplant image as it fea-
tures discontinuities, fine structures, and planar surfaces.
For a more comprehensive evaluation with all images and
algorithms we refer to Figure 6 in the supplemental mate-
rial. The top row of Figure 10 shows that algorithm per-
formance measured by RMS and BadPix is correlated on
the Jadeplant image. By contrast, our metrics show little
correlation with the RMS. The table in Figure 11 further de-
notes r2, the coefficient of determination, for each metric
paired with RMS, Bad1.0 and three of our metrics, com-
puted on the full dataset. Most of our metrics are highly un-
correlated. The higher correlation between Ffat and Dfat

is acceptable as both metrics measure similar stereo inaccu-
racies but are justified by having different scopes.

As a further experiment, we compute RMS scores on
each pixel subset of the metrics in order to separately test
the influence of our subset selection and of the metric func-
tions applied to these sets. Rankings based on the subset
RMS scores are more similar to those defined by our metrics
yet not identical5. We conclude that it is the combination of
subset selection and metric function that makes our metrics
specific about their meaning. This is nicely illustrated by
the stereo results in Figure 5. Understandably, the RMS is
more specific about fine structure performance when being
applied only to pixels at fine structures. Yet, the expressive-
ness of metrics which incorporate spatial pixel distributions
such as Ffrag cannot be achieved by the RMS metric.

Figure 10: RMS scores on the Jadeplant image are more
correlated with BadPix than with our more specific metrics.
(Algorithms at the lower left corner perform best).

Bad1.0 Bad4.0 Dfat Dthin Dfuz Fpor Ffrag Ffat Pbump Pdist Pmis 

RMS 0.14 0.26 0.04 0.08 0.71 0.00 0.00 0.01 0.14 0.04 0.25 

Bad1.0 - 0.66 0.14 0.05 0.03 0.05 0.07 0.35 0.06 0.10 0.26 

Dfat 0.14 0.35 - 0.03 0.00 0.07 0.12 0.73 0.10 0.10 0.07 

Fpor 0.05 0.06 0.07 0.01 0.00 - 0.62 0.13 0.09 0.02 0.00 

Pbump 0.06 0.27 0.10 0.05 0.14 0.09 0.00 0.02 - 0.68 0.61 

Figure 11: The coefficient of determination for linear fits
between scores across images and algorithms is very low
for most pairs of metrics. The pairs (Bad1.0, Bad4.0) and
(Dfat, Ffat) seem to be correlated on the Middlebury data.

4.5. Limitations

We identified two limitations of our proposed evaluation
framework. First, our metrics are not homogenously nor-
malized. Just like for the RMS, this is not an issue by it-
self. Yet, in combination, the different ranges make it diffi-
cult to get a good grasp of the relative differences between
algorithms across multiple metrics. To address this issue,
we provide heuristic score distributions in Figure 12. With
these histograms, individual metric scores can be put in con-
text when assessing algorithm performance. As a further
solution, our metrics could be rewritten to denote respec-
tive percentages of bad pixels, e.g. the percentage of surface
normals which are off by more than 5◦.

5Quantitative results on all images and algorithms are provided in Sec-
tion 3.2. and the second column in Figure 6 of the supplemental material.



As a second limitation, our pixel extraction methods are
not completely parameter-free. We publish our source code
such that our results can be reproduced and comparable
metric scores can be computed for further disparity maps.

Figure 12: The histograms illustrate the relative distribu-
tions of metric scores on the Middlebury dataset. With these
scores, individual stereo results can be evaluated in context.

5. Further Benefits and Applications
Beyond the assessment of algorithm performance on

academic benchmark datasets, our geometry-based evalu-
ation also supports blackbox tuning of algorithm parame-
terization and makes performance evaluation more tolerant
against dataset bias and ground truth deficiencies.

Parameter tuning of stereo algorithms often is a diffi-
cult and rather subjective process, all the more if the re-
spective implementation details are inaccessible. Combined
with a coarse parameter sweep, our metrics can be used for
application-specific parameter optimization.

Even carefully composed datasets are not perfectly rep-
resentative for the proportions of ordinary and variously
challenging pixels on test images. For instance, common
benchmarks feature large areas with flat objects and there-
fore tend to favor smooth disparity maps. By comput-
ing metrics for specific, semantically meaningful image
regions, our approach avoids to disadvantage algorithms
which perform well on less frequent yet equally important
regions such as fine structures. As a second issue, the term
“representative” is highly application-specific which lead to
specialized benchmarks such as KITTI [10]. Our approach
allows to generalize and re-combine multiple datasets. Al-
gorithm performance on different image regions may be
composed such that it complies with the proportions and
priorities of a given application.

Our proposed metrics may further be applied to data with
missing GT disparities. For example, the metric for surface
bumpiness can be computed on disparity maps with roughly
segmented planar image regions.

6. Conclusion and Outlook
We proposed and carefully justified the HCI Stereo Met-

rics: nine semantically intuitive performance measures for
three geometric categories of stereo ground truth. Our met-
rics can be applied to various benchmark datasets and to
dense algorithm results generated by two-frame stereo or
other reconstruction methods. By combining our proposed
metrics, automated benchmarks or parameter tunings can
be carried out taking into account a variety of application-
specific requirements.

The presented metrics and evaluation methods are avail-
able online6. On this interactive benchmark website, re-
searchers and engineers may thoroughly assess and com-
pare state-of-the-art stereo algorithms. We thereby hope to
help engineers identify “their best” stereo algorithm and to
foster progress in those stereo applications where existing
methods still yield insufficient quality.

Future work will focus on performance with respect to
radiometric challenges such as specular highlights or trans-
parency. These concepts will further be applied to optical
flow and multi-view stereo evaluation.
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