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1. Overview
On the following pages, we first provide further details

on the extraction of pixel sets at depth discontinuities, pla-
nar surfaces and fine structures. Secondly, we depict heuris-
tics for the metric ranges and present further results on met-
ric orthogonality. Finally, we provide additional examples
of stereo evaluation based on the novel metrics. The figures
are best viewed in color and on screen.

For the sake of completeness and reproducibility, Fig-
ure 1 indicates which regions of the Middlebury disparity
maps were used for the experiments and illustrations in the
main paper.

2. Extraction of Pixel Sets
In this section, we provide further detail on how we ex-

tract pixel sets for the geometry-aware evaluation of stereo
results. The explanations build upon the pixel sets and eval-
uation principles introduced in Section 3 of the main paper.

2.1. Extraction of Depth Discontinuities

To assess stereo results near depth discontinuities, we
use the pixel sets Md, Mf , Mb as displayed in Figure 2
and described in Section 3.1 of the main paper. With the
GT disparities Dgt, we define the discontinuity setMd as:

Md = {~x ∈ Dgt : |∇Dgt(~x)| > cd}

For our experiments on the Middlebury dataset, we found
cd = 8 to be a good value for the major depth discontinu-
ities. We further extractMf andMb by linearly following
local gradient directions on both sides of the discontinuity
and applying a median filter to fill gaps (see Figure 2).

We apply a similar procedure to compute Df and
Db (second row of Figure 2). Instead of just identifying
the affected pixels, we further set their values to the nearest
disparity value on the other side of the discontinuity.

c) Pipes (Fig 5) 

a) Adirondack (Fig. 1) 

e) Playroom (Fig. 2, 3) d) Playtable (Fig. 4) 

b) Art (Fig. 1, 9)  

Figure 1: The white boxes illustrate which image regions
were used in the main paper. For instance, the book and the
arm rest of the Adirondack image were used in Figure 1.

2.2. Extraction of Planar Surfaces

To assess disparity maps at planar surfaces, we extract
pixel sets of planar surfaces from Dgt and fit planes to
those sets. As shown in Figure 3.a, we first apply Gaussian
smoothing to the gradient directions of Dgt:

Dg = Gσ=6
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Figure 2: Top: The pixel setMd (white) represents regions
of depth discontinuities. The setsMf (blue) andMb (or-
ange) represent foreground and background regions on ei-
ther side of the discontinuities.
Bottom: To identify foreground thinning, the background
disparities Mb which are close to the discontinuity are
propagated intoMf . The resulting disparity map Db is de-
picted for the Adirondack image. To identify foreground
fattening, the disparities Mf are propagated into Mb, as
depicted in Df for the Piano image.

We then obtain an initial guess for planar surfaces (compare
Figure 3.b) by computing the change in gradient direction.
For the Middlebury dataset, we keep those pixels for which
two conditions apply: first, the local change in direction is
below 0.5 and second, the pixels are part of connected com-
ponents whose size is at least 1% of the total pixel count.

For each of these components, we use RANSAC to ro-
bustely fit planes to the respective pixel sets in Dgt. As
shown in Figure 3.c, we remove outliers which do not ac-
curately belong to the fitted planes. Figure 3.d displays the
normal directions of the final planar surfaces.

2.3. Extraction of Fine Structures

To obtainMs, the set of fine structure pixels in Dgt, we
first shift negative disparity gradients to the left and posi-
tive gradients to the right, to compute the degree of overlap
as shown in Figure 4.b and 4.c. Regions of high overlap
potentially belong to thin structures.

We remove fragments which are smaller than 0.05% of
the total pixel count to obtain the final setMs as depicted
in Figure 4.d.

a) smoothed gradient directions b) identified planar surfaces 

c) distances during RANSAC fit d) refined plane normals 

Figure 3: To obtain the set of planar surface pixelsMp and
the set of fitted planes P , we first compute a smoothed ver-
sion of the local gradient directions of Dgt (a). We then
identify connected regions of homogenous gradient direc-
tions (b) and iteratively fit planes to each of these compo-
nents (c). We finally keep the inliers of the plane fits in
Mp and compute the surface normals (d) for each plane
pi = (~ni, Pi) in P = {p0, ..., pm}.

a) left input image b) horizontal gradients 

c) degree of overlap d) cleaned fine structures 

Figure 4: To obtain the fine structure setMs, we first com-
pute the overlap resulting from horizontally shifting nega-
tive and positive gradients towards each other (b, c). After
thresholding and removing small fragments, we obtain the
final setMs (d) which is depicted in red, overlaid onto the
original disparity map.



3. Metric Evaluation
In this Section, we present heuristics on the value distri-

butions of the metrics. We further provide additional data
and figures for the evaluation of metric orthogonality.

3.1. Metric Ranges

Just like for the RMS, example scores are necessary for
the novel metrics to get a good grasp of the scale of differ-
ent metric scores. For instance, a score difference of 0.1
between two algorithms may be negligible for a metric in
range [0, 100] but most likely not for a metric in range [0, 1].

We therefore provide an overview of the metric ranges in
Figure 5. The table indicates theoretical and heuristic max-
ima for each metric. The latter are based on 13 algorithms
and 12 images of the Middlebury benchmark as explained
in the Experimental Setup of Section 4.1 in the main pa-
per. Together with the metric histogram in the main paper,
these metric heuristics help to get a better grasp on the rela-
tive differences and to get used to the meaning of particular
metric scores, just as for the RMS.

RMS Bad1.0 Bad4.0 Dfat Dthin Dfuz 

min 0 0 0 0 0 0 

heuristic max 70 80 45 0.6 0.3 3.4 

theoretical max ∞ 100 100 1 1 ∞ 

Pbump Pdist Pmis Fpor Ffrag Ffat 

min 0 0 0 0 0 0 

heuristic max 4.5 25 60 1.2 0.5 0.7 

theoretical max ∞ ∞ 90 ∞ 1 1 

Figure 5: Similar to the RMS metric, example scores for
the novel metrics are necessary to get a feel for which scores
are good or bad. We therefore denote the range of possible
values as well as the heuristic maxima which were obtained
based on the Middlebury dataset.

3.2. Orthogonality of Metrics

The orthogonality between existing and novel measures
was evaluated in Section 4.4 of the main paper. For reasons
of clarity, we depicted plots for the Jadeplant image only.
For the sake of completeness and more comprehensive eval-
uations, we depict scatter plots for all algorithms (labeled by
shape) and all images (labeled by color) in Figure 6 .

In analogy to the first row of Figure 10 in the paper, the
first column in Figure 6 plots the established RMS mea-
sure against two BadPix metrics and three of our metrics.
One can see, that there are correlations between the RMS
and the BadPix metrics and almost no correlations between
the RMS and the edge thinning and fragmentation met-
rics. There are moderate correlations between the RMS

and the plane orientation. This makes sense since first, ac-
curate plane orientation is indeed linked to accurate depth
estimates and second, planar surfaces comprise relatively
big pixel sets of the image and have thus a stronger influ-
ence on the RMS average. On the fourth subplot of the
first column, one can further see that algorithms with very
similar RMS measures yield very different scores on the
fragmentation metric (compare Figure 6, esp. ArtL in light
blue, Pipes in red and Shelves in olive).

The third column plots the novel edge fattening metric
against the same metrics as for the RMS column. Correla-
tions are much weaker between Dfat and the other metrics.
We further plot the RMS values computed on the pixel sub-
set for Dfat against the same metrics (second column in
Figure 6). As a general observation over all rows of this
column, the principal distribution of scores remains simi-
lar but not identical and it has generally higher RMS val-
ues. Hence, it does not suffice to limit the geometry-aware
evaluation to computing RMS values on geometric pixel
subsets.

4. Geometry-Aware Stereo Evaluation
In this Section, we provide exemplary metric scores and

rankings for multiple algorithms and each metric category.

4.1. Evaluation at Depth Discontinuities

Figure 7 and Figure 8 depict sorted algorithm results ac-
cording to their score on Dfat and Dthin. We refer to the
captions of the Figures for further evaluation details.

4.2. Evaluation at Planar Surfaces

Our pixel sets for geometry aware stereo evaluation
allow further automated quantifications of stereo perfor-
mance. Furthermore, Figures 9 and 10 illustrate how al-
gorithm performance depends on both, texture and surface
orientation.

4.3. Evaluation at Fine Structures

Performance evaluation at fine structures particularly re-
quires specific metrics as their relative weight is very low
on averaging metrics such as the RMS. Figure 11 and
Figure 12 depict sorted algorithm results according to their
score on Ffrag and Fsampl. For the fine structure metrics,
changes in rank order are particularly large. For further
evaluation details, we refer to the captions of the mentioned
figures.
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algorithms: 

Figure 6: Each plot compares algorithm results on multiple images measured with two metrics. Colors identify images and
shapes identify algorithms. For each image, the resulting line of a linear least squares fit is depicted in the color of the image.
Its transparency is set to r2, the coefficient of determination, i.e. lines are more opaque for better linear fits. We plot RMS
and Dfat metrics against other metrics (first and third column). In the second column we further plot RMS values measured
on the pixel subset for Dfat. One can see that RMS and Bad4.0 are the most correlated metrics and that the novel metrics
yield lower correlations.



Figure 7: The stereo results are sorted by edge fattening
performance. Numbers on top of the disparity maps and the
metric visualizations denote the rank and the metric scores
for Dfat. The tiny numbers on the upper left image cor-
ners denote the ranks and scores of the RMS computed on
the entire image (upper number) or on the same pixel set as
Dfat (lower number). Red areas in the green visualization
of the subsetMb denote edge fattening. Note how the met-
ric scores reflect the increasing amount of fattening present
in the different disparity maps.

Figure 8: The stereo results on the Adirondack image are
ranked by edge thinning performance and depicted analo-
gously to Figure 7. Note how much the relative rankings of
LPS and BSM differ when sorting by Dthin or RMS. Both
algorithms rank much better for edge thinning as compared
to their overall RMS rank. By contrast, the MeshS algo-
rithm is the third best algorithm by RMS score but it is
only the fifth and sixth best algorithm in terms of the edge
fattening and edge thinning scores.



Figure 9: The top rows depict algorithm results where the
colors of the cupboard surface indicate local gradient direc-
tions. The bottom rows depict logarithm histograms of the
direction counts for each angle in [−180, 180]. Algorithms
like IDR, LDSM and SNCC have very similar distributions
as the GT whereas others yield much more diverse direc-
tions.

Figure 10: For the cupboard in Figure 9, the direction his-
tograms of IDR, LDSM and SNCC are much more similar
to the respective GT histogram as compared to the analo-
gous histograms of IDR, LDSM and SNCC for the table
surface. The cupboard plane is much better reconstructed
as it features more texture and its orientation is more simi-
lar to fronto-parallel surfaces.



Figure 11: The stereo results are ranked by fragmentation
performance at fine structures and depicted analogously to
Figure 7. Note how much the relative rankings of Ffrag , the
RMS and the RMS atMs differ from each other. Many
local or moderately regularizing algorithms perform better
at fine structures and worse on RMS scores. The results are
best assessed when zooming to the thin bars on the lower
right corner of the images. Green indicates no fragmen-
tation, yellow and orange indicate moderate fragmentation
and read indicates completely missing structures.

Figure 12: The top rows depict algorithm results ranked by
porosity at fine structures. Note how the metric scores at
the bottom rows reflect the degree of missing structures.
The almost perfect SGBM1 result has a very good Fpor
score. The metric values for SGM, ELAS and SGBM2 re-
flect that their performance is lower yet very similar among
each other. The values for TSGO, LDSM and SNCC accu-
rately indicate that a lot of structure detail is missing. Simi-
lar to Ffrag in Figure 11, many of the top performing algo-
rithms in terms of RMS rank relatively low at Fpor.


