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Abstract
Generating large amounts of reference data with very little manual intervention is
required for performance analysis and recent learning methods. We present a method
for bootstrapping the alignment of video sequences to laser scan data based on few
manually annotated sequences with similar camera trajectories. The method consists
of three steps: inference on a directed path graph constructed from image wise cross
correlation is used for coarse alignment of two video sequences. Subsequently, we
apply graph matching based on SIFT and spatial similarity to find corresponding
control points between sequences and hence estimate the camera pose. The final
step is a majority voting mechanism over all assignments, thereby regularizing over
time. Thereby, the method is robust to visual clutter of dynamically moving parts
as well as changes in illumination. Comparison of results with ground truth show
that the performance of our method is en par with the manual annotation pipeline
albeit significantly faster: our method was used to register a stereo and optical flow
evaluation dataset in only 1/5th of the time that would be required for complete
manual annotation.

Zusammenfassung
Für die Erstellung von umfangreichen Referenzdaten für Performance Analysis und
Lern-Methoden ist es nötig, wenig zeitlich schlecht skalierende manuelle Interaktions-
schritte zu benutzen. Wir zeigen daher eine Methode für die initiale Registrierung
von Videosequenzen zu lasergescannten Punktwolken. Wenige manuell annotierte
Referenzsequenzen werden zur Registrierung von Zielsequenzen mit ähnlicher Kame-
rafahrt und Lichtverhältnissen angewandt. Die entwickelte Methode besteht aus drei
Teilen: Grobregistrierung ähnlicher Bildpaare mittels Graph Inference für einen Pfad
durch eine Ähnlichkeitskarte. Anschließend werden zu jedem Bildpaar durch SIFT
und geometrische Ähnlichkeiten mithilfe Graphmatching Zuweisungen von Kontroll-
punkten aus ein Referenz- in ein Zielbild bestimmt. Dies registriert das Zielbild mit
der Punktwolke. Abschliessend werden die Zuweisungen aus allen Bildern mittels
Mehrheitsvotierungen zeitlich regularisiert. Die Methode ist dabei robust gegen-
über dynamischen Verdeckungen und Änderungen in der Beleuchtung. Experimente
mit Groundtruth zeigen, dass die Methode gleichauf mit händischer Annotierung
ist, gleichwohl aber schneller: Die Registrierung eines solchen Datensatzes mit der
Methode daurt bloß 1/5 tel der für händische Annotationen veranschlagte Zeit.
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1 Introduction
Large scale datasets consisting of aligned intensity or color images and depth maps
are becoming more and more important in computational vision. Recent insights
gained in performance analysis research [9, 3, 14] indicate that algorithm results
on smaller datasets may not be representative enough to generalize well to relevant
applications such as autonomous driving. Additionally, (deep) learning [29, 17]
requires large amounts of training data to outperform state of the art methods.
Besides the raw input data this also requires reference data that can be used to

evaluate algorithms or to which learning algorithms can be applied. The reference
information can be depth for stereo image pairs or classifications like pedestrians,
bicycles or cars for images captured in automotive applications. Thus, a stereo
algorithm can be compared to the reference depth and a learning algorithm can learn
to classify the different objects in images given the reference labels.
The depth ground truth for stereo algorithms can be created as follows. Besides

a stereo image pair one also needs information on the captured scene. This can be
given by a precise geometric model of the captured objects. If the exact camera
orientation with regard to these objects is known, the depth value for each pixel can
be calculated as the distance of the camera to the respective object surfaces.
If the image of these objects was captured with a real camera, the true camera

position is unknown and needs to be estimated. This can be done using control
points. These are, for instance, corners in an image which have corresponding corners
in the geometric model. The camera pose with regard to an object can then be
estimated by minimizing the projection error. If the projection of these control points
coincides with the image points, an estimate of the camera pose is found.
All these estimates are subject to errors and ambiguities [25, 9, 15]. To ensure

sufficient accuracy of such real-world reference data, we always need manual interac-
tion. However, manual interaction does not scale well in time which is in conflict
with the need of large amounts of data.

One such large stereo and flow reference dataset for which the sequence registration
needs to be performed has been acquired at the HCI. To overcome the problem of
labor intensive manual control point annotation, this work proposes a semi-automatic
bootstrap-technique that uses prior manual annotations of 3D-2D correspondences to
automatically register further sequences with spatial constrained camera trajectories
and similar illuminated recording conditions.

The proposed method is illustrated in figure 1.1 on the following page and consists
of three parts: (a) video-based coarse alignment of the camera pose, (b) geometry-
guided graph matching for finding correspondences in individual frames and (c) tem-
poral regularization .
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Figure 1.1: Overview of the developed method. A similarity map between all frames
of a reference and target sequence is calculated, shown on the left. Frame
pairs with highest similarity will be picked which evolves into the contin-
uous gray path. After frame matching a feature matching will be applied
(right) assigning control points from reference frame to target frame.
Finally, the correspondences register the frames with the pointcloud.

In (a) we are using normalized cross-correlation (NCC) as similarity measure to
temporally align frame pairs from a reference and target sequence. The frame pairs
will be chosen by highest measure score. Due to repetitive elements in the sequence
this score can be ambiguous. Therefore, a temporal regularization will be imposed
by disallowing fast jumps between frame assignments pairs.
Next to frame matching follows (b) a feature matching step. Here, we want to

find the annotated control points of a reference frame in the target frame again and
use visual features to find correspondences. Due to highly repetitive structures in
most images, a simple and unconstrained feature matching will almost always find
wrong correspondences. Therefore, we construct a graph over all control points in a
reference frame and make assignments in the target such that the geometric structure
of the graph is most similar to the corresponding control points in the target frame.

The last step (c) is an outlier detection using unintrusive temporal regularization
by means of majority votes.
These individual steps will be explained in detail in chapter 4. The general

applicability of the proposed method will be evaluated in chapter 5. Prior to
discussing the presented annotation method we give an overview on the properties
of the processed dataset as well as related registration methods. This overview
can be found in the next chapter 2 and is followed by a detailed derivation of the
mathematical background in chapter 3.
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2 Related Work
In this chapter, we focus on prior work and related methods that are important for
this thesis.
The annotation method proposed in this thesis has a strong connection to a

reference groundtruth dataset that has been acquired at the Heidelberg Collaborative
for Imaging (HCI). For this reason, section 2.1 will give an overview of the used
dataset in order to gain a better understanding for the requirements and difficulties
of the dataset as well as the considerations made for the proposed method.

Next, we discuss related methods for video registration. In this context, we present
the contributions of our method which can be found in section 2.2.

In addition, we examine requirements on the storage and processing framework in
order to maintain data consistency with big datasets such as the one used in this
work. These requirements are addressed in section 2.3.

2.1 Benchmark Suite
The developed method has been applied to a comprehensive stereo and optical flow
reference dataset acquired prior to this work at HCI. The intention of the dataset is
to provide a challenging benchmark suite for automotive applications. Data consist
of a set of versatile sequences recorded in a stereo setup that show different features
and difficulties.
The following will give an overview of the dataset and discuss a subset of its

properties relevant for this thesis. As indicated above, our aim is to register different
sequences from the dataset with one another. Hence, the following discussion also
includes data-related implications on the registration method.

During data acquisition, emphasis has been put on variations of all kinds regarding
the recording circumstances. These include different seasons, lighting conditions and
dynamic objects like pedestrians. Examples for such different situations can be seen
in figure 2.2 on page 15. The recording locations have been fixed to the L-shaped
camera trajectories that can be seen in figure 2.1 on the following page. This was
done to avoid combinatorical explosion of the different aspects of the dataset as
would be the case for more liberally chosen trajectories. To our method this implies
(I1) that the dataset contains strong positional and temporal constraints that can be
exploited for correspondence matching.

The sequences have been captured during different seasons, different times of day
and different weather conditions. In addition, traffic participants like pedestrians,
bicyclists, car drivers and even pets have been employed to achieve dynamic scenes.
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Figure 2.1: Bird’s eye view of the scene in which sequences have been recorded. Most
of them were acquired in the L-shaped path. The respective legs show
a distance of approximately 230 m and 70 m for the longer and shorter,
respectively.

These different aspects can be seen in figure 2.2 on the next page. All these features
imply (I2) that many dynamic objects appear and disappear abruptly, giving rise to
object occlusions. Furthermore, the radiometric variability has a strong influence
on photometric correspondence matching as many objects may appear completly
different due to strong exhibition to sun or sharp edges due to shadows as well as
different levels of brightness.

Recording has been done with a resolution of 2560 px in width and 1080 px in height
and a frame rate of 200 Hz. The high frame rate ensures that most motions within
the image are subject to slow changes and the high spatial resolution ensures good
track-ability of objects. However, the high spatial as well as temporal resolution have
the downside of comprising redundant information. Processing the latter would not
necessarily be beneficial, but time consuming. In order to achieve a fast annotation
process it should be considered to (I3) skip as many as possible of these redundancies.
The geometric model according to which we calculate groundtruth consists of a

large point cloud. It has been captured by a high resolution light detection and ranging
(LIDAR) scanner, thereby leading to dense and precise pointclouds with a precision
of 1 cm and a coverage of approximately 2500 points/m2 on planar surfaces. However,
such a high density of the pointcloud imposes problems related to the registration
process. For instance, a corner may consist of several closely located points leading to
ambiguous annotations. In combination with the former implications, this makes the
registration task very challenging. In order to maintain accuracy it is inevitable to
resort to human inspection for quality control. This implies (I4) that the annotation
method should comply with human accessible features. Moreover, these registration

14
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Figure 2.2: Overview of available sequences showing the different challenges. The
sequences include different weather conditions like sun, rain and cloudy
setups. In addition sequences were recorded during different times of
the year. This results in strong photometric changes in the images like
shadows or high exposures in sunlight. Further, we see dynamic objects
like cars, pedestrians and dynamic occlusion of static geometry. Most of
the target tracks that were annotated before are drawn from the window
corners. They show periodic structures, are co-planar to each other and
are often partially occluded.
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features should be partially correctable by humans without starting the annotation
process all over again.

In summary, we have addressed the different aspects of the dataset and identified
implications for the development of a sequence registration method. In the following
section, we proceed to giving an overview of available registration methods in prior
publications that can be used to develop a registration method which suits the given
dataset.

2.2 Related Registration Methods
The annotation method presented in this work is related to previous work on
automatic image to point cloud alignment as well as video synchronization and
alignment.
Corresponding work on automated point cloud to image registration exists in the

context of aerial/remote sensing applications, for the alignment of multi view stereo
and LIDAR.

One example are aerial image to cloud registration techniques [21, 13], an overview
of which can be found in [22]. Methods that use aerial and ground viewing images
have the advantage that in this context, imagery depth and texture edges coincide
more frequently than in the general case such that a heuristic which correlates depth
and intensity features works well [13].
In [31], the camera is still placed on plane, albeit observing the scene from an

oblique angle. The approach here is to first compute depth maps from moving camera
stereo and then using ICP to align the resulting images. However, Zhao et al. also
require manual intervention to estimate the initial scale and pose with respect to the
LIDAR point cloud. It should be noted that for all methods in aerial use cases, the
observing camera is far removed from the scene, whereas in our case the camera is
in the scene.

Another class of methods are concerned with aligning dense multi-view stereo
geometry with LIDAR data [28, 19, 27]. The main approach is to first use ICP
to obtain a coarse alignment of the two point clouds and then jointly solve for a
multi view geometry and pose that is consistent with the LIDAR point cloud. These
methods work well in their respective case because the cameras are observing a single
object and the camera images have significant overlap, thus allowing for much more
accurate geometry estimates than in our case of a forward-moving camera observing
parts of the complete scene.

A different approach is Video synchronization for the temporal alignment of video
sequences that have a similar camera trajectory [6, 5, 30]. The authors of [6] pose
this as a database retrieval problem. However, their method is not suitable for our
case since there are no established databases for our sequences. The authors of [5,
30] on the other hand make use of a graphical model for establishing corresponding
frame assignments. Our coarse registration step conceptually borrows ideas from [5]
while at the same time using different data terms and regularizers to allow for much
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faster alignment without sacrificing accuracy.
A further field for image registration is the use of feature matching [20, 2, 18].

Feature matching denotes finding 2D correspondences from one image in another
image. Features that can be matched usually include points in the image with large
derivatives [26], such as corners. For the comparison of feature points there are two
possibilities. The first way is patch-matching [18] where two points are compared to
each other using visual patches. These patches, however, are not invariant against
rotation or translation. To overcome this issue, a second way is to develop and
compare features of the patches that are invariant against affine transformations [20,
2]. However, both methods are prone to mismatching for repetitively similar image
patches.
To solve these ambiguities, the authors of [23] developed a feature matching

algorithm based on graph matching. Here, possible matches are found by constructing
a graph from a certain feature of a reference image and finding correspondences in
target images such that the graph exhibits the same geometric relations. We use
a similar concept in the feature matching step. However, the construction of the
graph as well as the node and edge costs are different from [23], allowing for a more
intuitive parametrization and to leave out single assignments if no possible matches
can be found.
Image registration is also required in film industry. Here, one application is

matching video sequences with synthetic special effects. Synchronization methods
employed to this end need to be accurate or else the results will look unrealistic.
Leading commercial tools such as NUKE and PFTrack offer sophisticated user
interfaces for manual annotations to improve estimates of camera to point cloud pose.
This can be taken as an indicator that manual interaction is required for accurate
results in the registration process as is the case in our method as well.
In [15], the authors worked on the same dataset as presented in section 2.1 on

page 13. In their work, they developed a method to annotate 2D-to-3D correspon-
dences by sole use of manual work. The drawback of this approach lies in the fact
that manual annotation is very time consuming.

This bottleneck will be addressed by this thesis. The annotation method presented
in this work improves the pipeline of [15] by including manually bootstrapped
control-points into a semi-automatic annotation process.

2.3 Data Storage and Processing Framework
In the former discussion we provided an overview of the dataset used in this work as
well as related work concerning the registration step. Besides the dataset itself, a
project structure definition and programming API have been developed to deal with
the required huge amounts of data. The following gives a motivation for the usage of
this framework within this work.
The dataset presented in section 2.1 contains approximately 200 sequences, each

comprising 10000 stereo frame pairs per sequence. The required storage space
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consists of approximately 15 TB which is mostly taken up by the images, followed
by calibration data and point clouds. One sequence contains approximately 60 GB
merely for the stereo image pairs. Loading a complete sequence into memory is
not possible on any computer used for the present work. Therefore, only parts of
the sequences can be loaded into and computed in memory. This requires caching
implementations for every operation.
Besides the stereo pairs, a bundle of different meta information are stored, for

instance the camera intrinsics, uncertainties and time of recording. Each frame
comprises several thousand feature tracks of which only a small portion is used as
control points in later course. The control points will be selected with the help
of several tools and can be linked to different point clouds. This is required to
happen iteratively as we usually need manual interaction. Taking care of all this
meta information and the storage is a non-trivial task. Particularly when several
tools written by different people interact, data consistency is a big challenge for a
reference data set.

To tackle these storage problems in a consistent way, a framework called HO0KERS
[16] has been developed besides the mentioned dataset. The framework consists of
two parts:
First, it comprises a well-documented project structure based on HDF5 [10].

In addition, a c++ programming interface to access the project files has been
implemented. The interface exposes all objects as frontend/backend structures. This
separation ensures that only one backend instance exists at a time and that we
obtain proper caching for all objects. The first feature makes sure that access is
possible in a consistent way, even in asynchronous applications like GUI operations.
The second feature ensures that storage intensive objects like images can be passed
around by reference without sacrificing performance of the application. Loading
data is performed on demand and generated data instances disappear as soon as
they are not needed anymore without requiring the framework user to implement
caching over and over again. Caching also ensures that persistent storage is detached
from frontend logic and avoids project file corruptions in case of an application crash.
Concluding, the presented framework offers means for rapid prototyping combined
with data consistency.

Second, the framework comprises the implementation of the pipeline steps that are
used to generate groundtruth for the presented dataset. The different pipeline steps
all access the data via the discussed interface. This ensures fast access to data as
well as data consistency. Our annotation implementation therefor also makes heavy
use of the formerly discussed framework and has been injected into HO0KERS as an
additional tool.
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3 Background
This chapter introduces important mathematical concepts that will be referred to
throughout this thesis. We start with the pinhole camera model in 3.1. This model
is implicitly used in chapter 4 to model 3D-to-2D correspondences. The subsequent
section 3.2 focuses on deriving camera poses using the pinhole camera model whereas
section 3.3 covers methods for estimating the uncertainty of derived camera poses
and introduces a means for comparing the results in a statistically sound manner.

3.1 Pinhole Camera Model
In the following, we make use of geometrical relations between 3D points belonging
to point clouds and 2D feature points in images. To this end, we first need to
understand the process of imaging, that is, mapping a 3D world onto a 2D image
plane. This section elaborates on the mathematical model that is used to describe
such a process.

A camera usually consists of an image sensor and a lens. The lens can be identified
as a transformation that maps world points onto an image sensor. The image sensor
in turn corresponds to the image plane. It maps light intensities of world points onto
a logical grid, namely the pixels of an image.

The general case of mapping world points X ∈ R3 to image points Y ∈ Ω ⊆ R2 is
described by the so called point spread function

PSF : R3 × Ω→ R (3.1)

with ∫
Ω
dY PSF(Y ) = 1 (3.2)

describing how the light intensity of one point X is distributed onto the image plane
Ω. The PSF fully characterizes the imaging system. It can take the photo sensitivity
of the image sensor into account, including wavelength, geometric and chromatic
aberrations of the lens as well as diffraction of the aperture.

In this work, we are only interested in the projective position of a point X. Hence,
we do not need to consider the complete physical process of imaging. This allows the
PSF to be reduced to a delta distribution on the image plane Ω for every X, which
has the following signature:

π : R3 → R2 (3.3)
By choosing such a function we neglect the wave nature of light and its diffraction
effects and require the observed object to be in focus. Neglecting diffraction is
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possible when the observed object is large compared to the wavelength. The object
is sufficiently focused when the object distance is large compared to the focal length
of the lens. Both holds for usual vision applications.

Camera lenses still produce distortion of image points, which leads to displacements
of the projected points Y in the image plane. These distortions occur due to imperfect
lens geometries or chromatic aberrations and are usually found in the form of radial
distortions.
Such distortions can be corrected by modeling the projective properties of the

lens, usually with the help of radial and tangential polynomials [12]. The polynomial
coefficients are found using a calibration target with known geometry and comparing
the distorted projection of the object with the true geometry. Further information
about parameter estimation can be found in section 3.2.

All sequences presented in section 2.1 on page 13 have undergone such a calibration
process. The images were rectified beforehand such that straight lines in the scene
appear as straight lines in the images again. This allows us to neglect the distortion
effects and leads to the Pinhole Camera Model:YxYy

1

 = πθ(X) =

fx 0 cx
0 fy cy
0 0 1

H(θ)
(
X
1

)
(3.4)

Here, H : R4 → R3 is an operator, consisting of a homogeneous transformation
followed by perspective divide. It maps the world coordinates X into the camera
frame. Within camera frame, the image plane coincides with the xy-plane. The
focal lengths (fx, fy) and the principal point (cx, cy) eventually transform the natural
position into logical pixel positions. The focal length and principal point are called
the intrinsic parameters and are obtained from camera calibration. The still arbitrary
vector θ is called camera extrinsics and parametrizes the homogeneous transformation.
The form of parametrization will be discussed in 3.2.

Given the pinhole camera model, it is possible to compute the projective position
Y in the camera plane Ω of a world point X. The model is determined up to the
camera extrinsics θ which parametrize the position and viewing direction of the
camera within the world frame.

3.2 Parameter Estimation
In the former section, we have explained how to find the projective position of a 3D
point onto an image sensor. Given the camera extrinsics and intrinsics, we can now
compute the forward problem for every point X yielding the projection Y .
Many real-world processes are modeled as such a forward problem

F : RM → RN , x 7→ y = F (x) (3.5)

However, this is not always what is required. Often, an observation ŷ is given and
the task is to find the parameter x̂ which led to this observation. This yields the so
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called backward problem:

F−1 : RN → RM , y 7→ x = F−1(y) (3.6)

Essentially, we hence need to find the inverse of our model F . In the following
discussion, we illustrate how to find such inverse mappings.

In the above sections, we reasoned that our main task is to register sequences to a
pointcloud. In the present case, we want to find camera poses θ using correspondences
of 2D image features and 3D landmarks. To this end, we are given some set of
mappings (X1, y1), . . . , (XK , yK) of 3D world pointsXi and their respective projection
Yi according to equation (3.4) on the preceding page. We now effectively need to
solve the backward problem to obtain θ.
When solving the inverse problem, we encounter a number of difficulties. First,

finding a closed form of the inverse mapping is only straight forward for bijective linear
problems, but often not possible at all. In the model defined by equation (3.4) on the
facing page, the homogeneous matrix depends on the parameter θ. Hence, this model
exhibits a non-linear behaviour and furthermore is not bijective. Thus we cannot
find θ using only one correspondence. In order to assemble enough information for
obtaining a well-defined solution, the correspondences need to be linearly independent
and as such they should not be co-planar. Secondly, all measurements of X and Y
are subject to errors.
Theoretically, it would be possible to solve the inverse problem with only four

corresponding pairs [8]. However, this requires the points to be non-co-planar. In
addition, measurement errors can have a huge impact on the solution. Hence we can
expect the results calculated with four corresponding pairs to have a poor quality.
When solving for the camera pose, we need many more correspondences then required
for the analytical solution in order to get rid of the measurement errors and obtain a
robust solution.
To this end, we formulate the backward problem as an optimization problem,

effectively making use of the well-defined forward model. This leads to a Nonlinear
Least Squares Problem of the following form:

x̂ = argmin
x

φ(x, y1, . . .) = argmin
x

∑
i

(yi − Fi(x))2 (3.7)

This so-called objective function φ : RK → R reduces the backward problem to a
minimization problem. Solving for x

∇xφ(x, y1, . . .) = 0 (3.8)

leads to the desired parameters.
Finding derivatives of the forward model usually is straight forward. Hence,

the latter set of equations can easily be computed from the forward model in an
analytical way. Computing gradients of the inverse problem is much more accessible
for computational methods than finding analytical solutions. Hence, for a large set
of correspondences it is convenient to use numerical methods that minimize the
objective function and lead to an estimate x̂.
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Pose Parametrization In the case of the pinhole model equation (3.4) on page 20,
we need to find the homogeneous transformation H that can be expressed by a R4×4

matrix. In general, this transformation is a composition of one translation and one
rotation. An arbitrary rotation matrix can be described by three parameters, a
translation by a further three. Hence, not all of the coefficients in the transformation
matrix are independent of each other. Solving for the twelve matrix entries would
not be a sparse parametrization of the transformation.
Therefore, we choose our parametrization θ to be

θ = (tx, ty, ty, rx, ry, rz) (3.9)

with ~t being the translation vector and ~r/|~r| the rotation axis with the rotation
angle |~r|. This rotational parametrization is called angle-axis representation and the
corresponding vector ~r is called rotation vector.
The chosen representation not only removes the redundancies of the matrix ele-

ments, effectively constraining the matrix entries to unit vectors, but as a side effect
also reduces the number of derivatives that need to be computed for equation (3.8)
on the preceding page.

Regularization The fact that not only the solution, but also many approximate
solutions will be found as local minima in the optimization problem defined in
equation 3.7 makes it very hard to find the global minimum. This is by way of
example shown in figure 3.1a on the next page. Here, x̂ is the desired solution.
However, the starting guess of x significantly influences whether x̂ will be reached.
The illustrated minima can also be local minima of a larger objective function. In
this case, we need to avoid getting stuck in any of the local minima.

To this end, we add further constraints to the solution, thereby effectively reducing
the solution space. Adding constraints is done by means of regularization.

In the following example, we want our solution to be as near as possible to x = 0.
We therefore add a term cx2 to φ and thus penalize solutions that are far away
from the constraint. This is illustrated in figure 3.1b. We can see how a unique
solution evolves and that the local minima are deformed to plateaus, avoiding the
minimization task to get stuck too early.

However, if the objective function is over-regularized, the solution will tend towards
the minimum of the regularization instead. This case is illustrated in figure 3.1c
and demonstrates that the selection of the regularization weights is a crucial for the
solution and always needs to be carefully tuned to the respective problem.

3.3 Uncertainty Estimation
The former discussion dealt with projection models that allow to calculate the
projected position Y of a 3D landmark X given a camera pose θ. Next, we discussed
how to find a camera pose given a set of 2D/3D correspondences and using the pinhole
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Figure 3.1: Influence of regularization on the objective function. On the left is shown
an example for a pure objective function, in the middle with added
regularizer. On the right is shown a overregularized objective function.
The pure objective has many equal global minima, combined with local
extrema. Regularization adds further contraints to the solution and so
favoring only one of the many possible minima. However, if the objective
is overregularized, then the solution will be governed by the regularizer.

camera model. We reasoned that the corresponding pairs exhibit measurement errors
regarding their positions which also affect the solution θ.
In the following, we aim to quantify the effect of the measurement uncertainties

on the solution by using error propagation. To this end, we first show how the least
squares problem relates to random variables and then discuss how to propagate
observation errors in the region of the solution θ.

We start again with equation (3.7) on page 21. The sum over all squared differences
can be rewritten using the scalar product

∑
i

(Fi(θ)− yi)2 = (F (θ)− y)T · (F (θ)− y) (3.10)

We can compare this to the definition of the probability density function of a
multi-variate Gaussian distribution

fX(x) ∝ exp
(
−1

2(µ− x)T · Σ−1 · (µ− x)
)

(3.11)

and see that we can identify the model values F (θ) as mean value µ and the
observations y as one realization of a standard normal distribution. When minimizing
the least squares errors, we effectively find a model F (θ) that is most likely to yield
the observations y under the assumption of a normal distributed error process.
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3 Background

Having identified the least squares problem as a maximum likelihood estimator
with normal distributed error processes, we ask for a means to compare different
solutions to the problem by taking their uncertainties into account.

We can motivate such a distance which uses the gaussian density function (3.11) by
focusing on the exponential argument. Apart from the factor 1/2 and the covariance
matrix Σ, the term resembles the squared euclidean distance. Omitting the factor
1/2 leads to the Mahalanobis Distance

m =
√

(µ− x)T · Σ−1 · (µ− x) (3.12)

which normalizes the difference of a realization x to the mean value µ by the variance
Σ.

Given a random process, two independent solutions θ1 and θ2 are likely to deviate
from each other. We can measure this deviation by assuming that they originate
from the same true underlying solution ν and construct a composition

x = θ1 − θ2 (3.13)

that has a mean value of

E[x] = E[θ1]− E[θ2] = ν − ν = 0 (3.14)

and variance of

Σ = E[(x−
0︷ ︸︸ ︷

E[x]) · (x−
0︷ ︸︸ ︷

E[x])T ]
= E[(θ1 − θ2) · (θ1 − θ2)T ]
= E[θ1θ

T
1 ]− E[θ1θ

T
2 ]− E[θ2θ

T
1 ] + E[θ2θ

T
2 ]

= E[θ1θ
T
1 ]− E[θ1]E[θT2 ]− E[θ2]E[θT1 ] + E[θ2θ

T
2 ]

= E[θ1θ
T
1 ]− ννT + E[θ2θ

T
2 ]− ννT

= Σ1 + Σ2

(3.15)

where the Σi are the covariance matrices of the solutions θi. Plugging (3.13) and
(3.15) into the Mahalanobis distance yields

c =
√

(θ1 − θ2)T · (Σ1 + Σ2)−1 · (θ1 − θ2) (3.16)

as a metric to compare two solutions θ1 and θ2 for statistical consistency.
In order to compare two solutions, we are hence left with the task of finding their

covariance matrices Σi.
The backward problem is solved by the least-squares formalism given in equa-

tion (3.7) on page 21. In the region of a solution θi, the nonlinear least squares
problem can be linearized. In this case, we find a linear closed-form solution for the
parameter estimation using normal equations. By applying linear error propagation
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3.3 Uncertainty Estimation

and solving for Σi we can find [1] that the covariance matrix of this problem is given
by

Σi =
(
JT · Σ−1

y · J
)−1

(3.17)

where J is the Jacobian matrix evaluated at the solution θi and Σy is the covari-
ance matrix of the observations y. The latter corresponds to known measurement
uncertainties.

Obtaining the covariance matrices Σi completes the discussion about uncertainty
estimation. Solutions θi can now be compared with the Mahalanobis distance in a
statistically sound manner. We use this distance later in chapter 5 for performance
analysis.
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4 Registration Method
In the following chapter, we return to the the development of the proposed annotation
method and the underlying statistical models as have been introduced in chapter 1.

From the introduction of the dataset in section 2.1 on page 13, we learned about
implications that need to be taken into account for the registration task. We will
consider these implications and explain the resulting structure of the proposed
method in section 4.1.

The remainder of the chapter then discusses the individual steps of the annotation
process in detail.

4.1 Outline
From the implications of the dataset discussed in section 2.1 on page 13, we learned
that we have to expect challenging sequences that need to be registered. This
leads to the fact that we cannot expect our method to work smoothly on all the
different situations. In order to guarantee a complete and precise registration, the
workflow requires I4 the possibility of manual intervention whenever it is necessary.
Human interaction should be intuitive and effective as possible. The authors of
[15] suggest control points for camera registration. These control points are chosen
such that the 2D features in the image are visually well-perceptive features like
window corners or gables of the surrounding houses in the scene. Due to their [15]
initial annotations on the given dataset, the authors already created a workflow
for manual annotations. This suggests that the method developed in this work
should be compatible with the aforementioned manual annotation as a fallback for
error correction. We expect manual correction to be necessary on local parts of the
sequence. Hence, we also require our method to work as local as possible in order to
guarantee as few as possible side effects due to manual interaction. Furthermore, the
initially annotated sequences can be used as reference for further annotations. In
conclusion, this suggests that the method should consider the same visual features
as in [15]. Beside the compatibility with manual corrections, the most striking
advantage is the reuseability of the already annotated sequences, thereby reducing
the amount of additional initial human intervention to a minimum.

The registration of further target sequences T to a pointcloud L works by using the
same corresponding 3D landmarks {lk} ⊆ L that are associated with tracks rm ∈ Ri

in frames Ri ∈ R of a reference sequence R. We then register a target sequence T
by linking the matched 2D tracks {tn} of a target frame Tj to the same landmarks
as the corresponding 2D matches {rm} of a reference frame Ri. Effectively, this
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4 Registration Method

reduces the video-to-pointcloud registration to a 2D feature matching problem on a
frame-wise basis. The principles of this feature matching will be further discussed in
section 4.2.
Feature matching requires similar frames with similar features. Before we can

match these features we hence have to find reference and target frame pairs that can
be used for feature matching. A method that exploits I1 the strong temporal and
spatial constraints that all sequences have in common will be presented in section
4.3.

Finally, the locality of the feature matching sometimes suffers from spatial am-
biguities leading to wrong annotations. To overcome these limitations, we present
an effective method for outlier detection using temporal regularization. The outlier
detection does not affect the local inference on the feature matching. This post
processing step is presented in section 4.4 on page 38.
In summary, the proposed annotation method consists of three steps, namely

Frame Matching, Feature Matching and Outlier Detection for the reasons given above.
The following sections will discuss the individual steps in detail.

4.2 Feature Matching
In the outline of the proposed method, we reasoned that video registration should
be performed using feature matching. To this end, the following discussion presents
different methods for feature matching and reasons about their useability regarding
the implications that we have found in section 2.1 on page 13.
For the moment, we assume that we already have found a reference and target

frame pair for which we can match image feature points. These frame pairs could be
selected manually or by a further preprocessing step as discussed in 4.3. We further
state that this preselection found a frame pair that has a sufficient visual overlap with
a respective number of common features. Additionally, we assume that for reference
and target frames, a set of feature points already exists that have been previously
defined by a feature tracker or manual interaction. Given these preconditions, we
can discuss the different matching procedures considered in order to find features
from the reference point set in the target point set.

Patch Matching is a method comparing an image patch of the reference frame
to an image patch of the target frame [18]. The patches that need to be compared
are defined by a neighbourhood around the feature points we aim to find matches
for. Comparison is then performed using a metric like the euclidean distance or
convolution filters. The best match is chosen as the nearest patch in terms of the
chosen metric. For the euclidean distance, this would be the minimum value, for
convolutional filters it would be a maximum value. A crucial parameter for patch
matching is the patch size. The selection of this parameter is not trivial: The
size of the feature tracks varies with camera distance to the respective point. The
features can have extensions as small as a few pixels or as large as a few ten pixels.
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4.2 Feature Matching

Furthermore, differences in camera translation and rotation can lead to different
positions and scalings as well as rotations in the target image. The metrics compare
the patches in a pixelwise way. Hence, even small shifts or differences in scale can
lead to big differences in the metric value. This shows that the patch size needs to be
selected carefully. Choosing the patch size too large would induce problems that arise
due to the scaling or slight translations. Choosing them too small would not capture
enough of the structure, thereby reducing the sensitivity. Due to the implication
of high resolution I3, we can expect larger feature points in any case. Hence we
are forced to choose larger patch sizes which would make the proposed matching
method not invariant against scaling and rotation. Preliminary experiments proved
this behaviour. Hence, we have to choose a method that is more robust against
changes in rotation and scale.

Feature Descriptors are abstract representations of image patches using Gaussian
filters, histograms etc. The goal of such an abstract representation is to achieve
invariance against rotation and scaling [20, 2]. This is done by constructing feature
vectors from different operations on the patches and again comparing these by a
metric. In contrast to template matching, this concept does not compare single
pixel values but values that are a product of many pixels which is the reason for the
affine invariance. The best match is then the feature which is closest according to
the metric. However, preliminary experiments showed that most of the annotated
reference features were not found by the described method. Instead, this technique
more often then not found neighbours or similar points. Note that many of the
previously annotated tracks by [15] were window corners as can be seen in figure 2.2
on page 15. These features all look very alike. Hence, due to image noise and lighting
differences we can understand the resultant mismatching of similar feature points.
However, if the feature points are visually similar, we can expect this for the abstract
feature vector as well. This can be put to use by looking for the reference feature
point in the k nearest neighbours of the target features with respect to the abstract
feature vector. In most cases it was seen to be sufficient to choose k = 3. In this
case the correct control point was almost every time within the KNN set.

Graph Matching So far, we presented Patch Matching and Feature Descriptors
as two possibilities to match tracks from the reference frame to a target frame.
We identified the need for invariance against affine transformations and showed
that patch matching is not robust against these transformations which led to the
introduction of feature descriptors. Both presented techniques still show weaknesses
at highly repetitive patterns like window corners. This only allows matching up to a
set of possible candidates. Besides, we did not take into account the implication I2
of dynamic sequence elements. In this context, we concluded that due to dynamic
elements in the sequences we have to expect object occlusion. This implies that not
all tracks are likely to be found in a target frame. Making use of KNN search to find
the closest matches, we will find completely unrelated correspondences in this case.
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Figure 4.1: Illustration of the graph matching problem. A graph is constructed
using annotated tracks in the reference image (left). We want to find
assignments of the tracks in the target (right) such that the graph edges
are most similar in reference and target frame. The arrows illustrate the
assignment. The blue surfaces around the target tracks denote possible
candidate sets PTn. The grayish circles correspond to unrelated target
tracks.

Thus, matching for individual feature points shows ambiguities in the assignment.
We have to solve these ambiguities by taking further relations of the tracks into
account. In the following, we discuss the development of a method that is capable of
dealing with these ambiguities as well as object occlusion.
To this end, we recapitulate our annotation goals. We want to register a target

frame Tj given a reference frame Ri. Both frames have corresponding feature tracks
{rn} and {tm}. Some of the reference tracks ri are associated to a landmark lk. We
want to find feature correspondences {(rn, tm)} between reference and target frames.
We have seen that the assignments have to be made taking inter-feature relations
into account in order to avoid ambiguities. For each found correspondence (rn, tm),
we then assign the landmark lk associated with each rn to the corresponding tm. By
this linkage we finally register the target frame Tj with the pointcloud L.

From the former discussion, we have shown that using feature descriptors leads to
a prechoice of possible candidates {tm} for each reference track rn and call this set of
candidates PTn. Since we have to make allowance for occlusions due to I2, we extend
each of the sets PTn by a null target that denotes an unassigned correspondence.
We are thus left solving a combinatorical assignment problem. We solve this

assignment problem by matching similar graphs using inter-feature relations as
proposed by [23]. The construction of the respective graphs will be discussed in the
following.
A graph in one frame consists of nodes and edges. Each node n is associated to

one unary information. Every edge (n,m) connects two nodes n and m and carries
information that relates both nodes. In our case a node corresponds to one track
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in a frame. An example for such a graph can be seen in figure 4.1 on the facing
page on the left side. For each node rn in the reference frame, we want to find a
corresponding tm in the target frame such that all correspondences (rn, tm) resemble
a graph in the target frame that is similar to the graph in the reference frame.

This leaves us with the need for finding a means to compare the similarity of the
graphs and optimize the correspondences. The construction of this problem will be
done as follows. For each rn, we define a discrete label an ∈ PTn that denotes the
target track to which the given rn is linked and call this the assignment of rn. Note
that each prechoice PTn contains a null track that does not belong to the target
frame Tj, such that we find an /∈ Tj. We want to optimize the set {ak} using a
discrete maximum likelihood estimation (cf sec. 3.3). Hence, we have to formulate
the similarity measure using the notion of energy terms. Together with the labels
an we can define such energy terms for the unary and binary information of the
nodes. In the following, ~rn and ~tm denote the position of the track within their
corresponding frames.

We start with the unary term. From the former discussion, we learned that we
need to match images that show visual similarity. In this case, we can expect that
corresponding tracks show up in similar regions within Ri and Tj . Hence, we declare
tracks to be similar if they exhibit similar positions within their respective frames.
We also need to take the unassigned case into account. This label receives a default
distance Cu. Effectively, this forces the optimization to leave an rn unassigned when
no tracks tm are closer than the distance Cu. These considerations are expressed in
equation (4.1).

ρn =

|~rn − ~an| for an ∈ Tj
Cu else

(4.1)

Next, we focus on the inter-feature relation. In the discussion of the unary terms
we used the fact that the tracks exhibit similar positions in both reference and target
frames. It is then reasonable to assume that the tracks also retain their relative
positions to each other [23]. We will exploit this fact to define the pairwise or binary
terms. Beside the general case where both labels an and am refer to valid tracks,
we have to take care of special cases. First of all, the assignments an should be
unique. We do not want different an to refer to the same tm. We ensure the latter
by giving this combination a high energy value. Secondly, if one of the an denotes
no assignment, we give this constellation a fixed distance Cp; for both an and am
unassigned we set the values to be 2Cp. The former case ensures that no assignment
will be made if no features within a given distance can be found. The latter favors
solutions with at least one assignment by setting a higher clipping threshold here.
The general case is then simply the difference between the tracks. Given the former
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considerations we present the energy term in equation (4.2).

φnm =


∞ for an = am ∈ Tj
2Cp for an = am /∈ Tj
Cp for an /∈ Tj ∨ am /∈ Tj
|(~rn − ~rm)− ( ~an − ~am)| else

(4.2)

In contrast to [23], the presented energy term compares the positions using euclidean
distances. Using polar coordinates and splitting up this relation into angle and radial
distance would once more induce problems regarding the scaling. Hence, we chose a
measure that only consists of pixel distances and as such is intuitive to scale.

So far, we have presented the unary and binary terms used to compare two feature
graphs. The remaining step is the assembly of these unary and binary terms into an
optimization problem. The reference frame graph G = (V,E) with its nodes V and
edges E is constructed as follows. The set of nodes V consists of all tracks rn that
are connected to a landmark lk. Each node rn is connected to its Kr spatially nearest
neighbours. The binary terms (4.2) are symmetric. Hence, (rn, rm) = (rm, rn) are
identical edges and we only add one of them to E. Since we pose the optimization
problem as normal-distributed Maximum Likelihood Estimation, we have to square
the energy terms and scale them by their variances. The scaling is given by σu and
σp which can be identified as the expected standard deviations for track positions
and inter-track relations. Finally, optimizing equation (4.3) for the respective {ak}
yields the desired feature matching

U({an}) =
∑
n∈V

1
σ2
u

ρ2
n +

∑
(n,m)∈E

1
σ2
p

φ2
nm (4.3)

This concludes how to construct a feature matching process that takes inter-
feature relations into account using the construction of graphs. We next examine
the proposed graphs with respect to their practical properties.

For the construction of edges, we learned that the spatially Kr nearest neighbours
are chosen. Let there be cliques of tracks in the frames. The latter can happen
for instance if tracks lie on different house facades, as can be seen in figure 2.2 on
page 15. If the number of tracks per cluster is higher than Kr, we can observe the
graph G to decompose into independent subgraphs. This decomposition has an
impact on the optimization process as these subgraphs can effectively be optimized
independently. This property can be exploited when camera pose differences lead
to different reprojections of the points. In this case, the whole cluster can be
shifted but the inter-cluster relations still show similar behaviour. If there were
connections in between such clusters, this would lead to higher errors in the pairwise
terms and thereby harmfully influence the optimization process. On the other hand,
choosing a too small Kr leads to overclustering. This overclustering in turn leads
to less inter-feature relations taken into account with accordingly more unfavorable
assignments.
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Due to the independence of subgraphs, we can still encounter completely wrong
annotations. These can occur if two reference tracks in different subgraphs link to
the same target tracks or when the track coverage is very sparse. In these cases no
suitable geometric information is available and outlier are likely. Hence, the final step
of the feature matching is a plausibility check using RANSAC [7]. Here we estimate
the camera pose of the target frame using the made annotations. Obvious outliers
are detected with RANSAC by comparing the reprojection of the landmarks with
actual track position. If the reprojection for an individual point does not agree with
the position within a range of ∆r, we reject this annotation. If after this plausibility
check there are still various tracks {rn} that all link to the same target tn, all of the
correspondences are dropped.
Another aspect are the the scales σu and σp for the unary and pairwise terms

respectively. From section 3.2 on page 20 we learned about regularization and the
effect of unsuitable weights, resulting in overregularization. Choosing wrong scales
here reveals the same problem. We also learned about the duality of least-squares
and Maximum-Likelihood-Estimation. By knowing that these scales correspond to
uncertainties, they initially can be chosen intuitively by taking the observed variance.
Considering this we can drastically reduce the search space for suitable parameters.

In this section, we presented a robust method to register a target frame Tj with a
pointcloud L. This registration process makes use of a reference frame Ri that shows
visual similarity to the target frame and was already registered with L before. The
registration is the performed by matching annotated reference tracks rn to tracks tm
in the target frame and thereby linking the target tracks tm to landmarks lk. This
finally registers the target frame with the pointcloud. The proposed method makes
use of graph matching. We presented how to construct such graphs and find best
matches with respect to the graph. Finally, we presented a plausibility check for the
matched tracks.

4.3 Frame Matching
So far, we have discussed the feature matching for a frame pair (Ri, Tj). The following
section will be concerned with how to find such a frame pair.
From the introduction of the dataset we learned in the context of I1 that the

sequences are recorded following one camera path through the scene. For two
sequences that start in the same point and end in the same point, we can be certain
that one frame pair (Ri, Tj) within both sequences matches sufficiently. We will
exploit this high temporal and spatial correlation of the sequence in order to find
an initial guess to the feature matching and discuss possible ways of establishing
correspondence.
We first assume that the driving speed in both sequences is constant. Since the

sequences start and end in nearly the same points, we can assume that the best
match would be given by (Ri, Ti) where the index i denotes the same frame number
within in the sequences. However, these assumptions are not met in our case. First
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Figure 4.2: Visualization of the optimization problem. Left side shows the graph
structure together with an example similarity map S. Each single-side
potential ρj obtains it’s values from one row of the S. The gray diagonal
path corresponds to assignments that are optimal given this model.
On the right one can see the qualitative form of the pairwise potential
between two nodes j and j+1. Due to its’ asymmetric form this potential
discourages solutions backward in time.

of all, sequences do not necessarily start or end in the same points. Hence, the
sequences have different lengths. Secondly, the vehicle sometimes slows down or even
stops due to obstacles on the street. This implies that the chosen frame pair (Ri, Tj)
will usually be out of sync such that i 6= j. For further reference, we call this method
diagonal coarse alignment for reasons that we see later.

For the feature matching step, we require visually and spatially similar images
and as such it is safe to assume that the chosen frames (Ri, Tj) show similar image
content. In this case, we can compare the frame content using a simple pixelwise
metric. Comparing each frame Ri to each frame Tj results in a similarity map S.
The individual components are given by

Sij = s(Ri, Tj) (4.4)

where s denotes the similarity measure. We discuss a suitable choice for this measure
later in this section. Given the measure s for each frame Tj , we can find a frame Ri by
choosing the index i which shows the highest similarity according to s. We will later
refer to this method as unary max. The described approach generally works well if
the scene does not comprise more than one location with visual similarities. However,
in the used dataset there are duplicate parts in the sequences that consequently
exhibit visual similarity. Comparing the examples from figure 2.2 on page 15, we see
similar images in between two of the houses. This means that similar values will arise
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when driving past each house pair. The choice of j according to s is then dominated
by image noise or different lighting effects and can lead to false assignments.

To solve these issues, we ultimately take the temporal coherence of both sequences
into account as suggested by [5]. Frames are ordered within their sequence. Hence,
given a certain correspondence (Ri, Tj) the neighbourhood can be approximated by
(Ri±m, Tj±m). We also expect this temporal continuity within the similarity map S
as illustrated in figure 4.2 on the preceding page on the left side. This suggests to
fuse the similarity measure S with the temporal continuity to find the mappings
(Ri, Tj), thereby exploiting spatial and temporal coherences between the respective
sequences.

Path Inference In order to find a continuous path in the similarity map, we
construct a Markov chain. In this case, we want to match target frames Tj against
reference frames Ri. Hence, we identify each Tj with one node in the Markov
chain. Each node has a label aj ∈ R that assigns one of the reference frames to the
corresponding node Tj. Similar to the feature matching in section 4.2 on page 28,
we pose the inference problem as an energy minimization problem. Hence we need
to choose suitable unary and binary energy terms.
We start again with the unary terms. These terms consider information that is

only related to one node. From the former discussion we have seen that we can find
the best individual match using the similarity map S. This suggests to use S as
unary term such that the resulting unary potential is given in equation (4.5).

ρj(i) = Sij (4.5)

The latter shows that the similarity map needs to be normalized such that the best
unary match corresponds to the smallest value in ρj.
We now discuss the binary terms relating two frames Tj and Tj+1. Due to the

continuity in time we can expect these frames to have solutions that are close to
each other. We enforce this with a quadratic potential that penalizes solutions which
encompass large gaps. Another property of the sequences is that for almost any
sequence, the vehicle does not drive backwards such that we can suppress solutions
backward in time. We achieve this by employing an asymmetric potential, thereby
favoring solutions with ai < ai+1. Furthermore, we can expect the vehicles to have a
known mean velocity larger than zero. This effectively pushes the solution forward
in time and is expressed in the parameter v. An example for the pairwise term is
given in figure 4.2 on the facing page whereas the definition of the pairwise term has
the following form

φv(x, y) =

(y − x− v)2 for (y − x− v) ≥ 0
(y − x− v)4 for (y − x− v) < 0

. (4.6)

Having explained the construction of unary and binary terms, we finally have
to assemble the optimization problem. The constructed factor graph is illustrated
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in figure 4.2 on page 34 on the left hand side. The graph G = (V,E) consists of
nodes V for all target frames Tj and edges E that connect every (Tj, Tj+1) up to
the TJ−1th frame. The final potential that is associated to the factor graph is given
in equation (4.7). Optimizing U over the possible labels {aj} yields a path that is
optimal given this model

U = 1
σu

∑
i∈V

ρi(ai) + 1
σ2
p

∑
(i,j)∈E

φv(ai, aj) (4.7)

From the definition of the graph we can now deduce properties that are relevant for
productive use.
We have presented the parameter v as the mean velocity of the vehicle within

the frames. The velocity must not necessarily be constant during the sequences.
Obviously, the vehicle may perform local slowdowns or even stops. Hence, it can
be necessary to determine the velocity in a local fashion. This can be achieved eg.
using structure from motion [11], where the same principles of stereo triangulation
are used to reconstruct scenes.
However, these estimates are subject to errors. Besides the local mean velocity

we would hence also need to estimate the standard deviation σp in this case. If no
local estimate is used, the mean velocity can still be set to a reasonable default value
in the following way: In case that the similarity map S reveals no or far too little
structure, we would like the path to follow a slope that corresponds to the diagonals
of the similarity map. If the similarity map is a square matrix, the slope can simply
be set to one. However, sequences are usually not equally long which needs to be
taken into account. By setting v to the ratio between the number of reference and
target frames we are able to assign v a slope that resembles the desired diagonal.
This estimate to v can be used as a graceful fallback.

So far, we assumed that all frames from T are registered with a reference frame
from R. Note implication I3 about high frame rates. There, we concluded that many
of the frames will show high temporal redundancies. If we assume that the vehicle has
a mean velocity of 8 m

s , corresponding to 30 km
h , we move by approximately 5 cm each

frame. In the course of chapter 5, we will see that this corresponds to the resolution
limit of the pose estimation. Even if we only process the annotation at 4 Hz, we
will encounter a frame distance of 2 m. This shows the high redundancy of the
dataset. Hence, it is highly adviseable to skip frames in order to keep computational
cost low. Ideally, a subsampling should be chosen according to the speed of the
vehicle. However, the former discussion shows that a constant subsampling should
be sufficient when the number of subsamples is chosen with regard to the maximum
velocity.

Similarity Measure and Pre-Filters In the former discussion we have presented
how to construct an optimization problem taking frame similarities and temporal
continuity into account. So far, we have delayed the choice of a suitable similarity
measure. In the following, we address this point in terms of giving the reasons for the
choice of the similarity measure. Besides, we discuss the for and against of prefilters.
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1 4 8 16

Figure 4.3: This figure contains several examples for prescaling before calculating a
similarity map. From left to right the prescales are 1, 4, 8 and 16. From
top to bottom are shown different sequence pairs.

In section 4.2 on page 28, we already reasoned about Patch Matching which is
closely related to our current concern. In our case, patches are simply whole images
without the need for search windows. The same objections that we have identified
for patch matching then apply here as well.
The images that need to be compared show variations in lighting conditions, as

addressed by I2. Hence, the same surface can be brighter or darker according to
the current conditions. We would like to compare images independently of such
variations. This implies that the measure needs to be a relative one. We aim to
detect whether bright or dark regions match against each other. Effectively, this
suggests to employ a pixelwise correlation of the images. In this course, we also need
to normalize the images such that a correlation of 1 corresponds to a perfect match.
The resulting measure is characterized by the following equation

Sij = s(Ri, Tj) =
∑
x,y |Ri(x, y) · Tj(x, y)|∑

x′,y′ |Ri(x′, y′)| ·
∑
x′,y′ |Tj(x′, y′)|

(4.8)

Applying this measure to all possible combinations of {Ri} and {Tj} then results in
the aforementioned similarity map S.

Due to the high resolution of the frames it is questionable if the full image resolution
is required to compute the similarity map. Therefore, we will discuss the effect of
prescaling the images. We aim to understand how prescaling influences the contrast
within the similarity maps. To this end, we show examples that were calculated
using equation (4.8). Before applying the metric s we prescaled the images by fixed
factors of 1, 4, 8, 16. The results can be seen in figure 4.3. From this figure we deduce
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that the prescaling has nearly no influence on the results. Scales of up to 16 show no
qualitative difference. This confirms that the high spatial resolution carries much
redundant information that we can omit for coarse matching by prescaling the input
images.

4.4 Outlier Detection
So far, we have discussed the framewise feature matching in section 4.2 and the
frame pair matching in section 4.3. Feature matching is applied framewise, thereby
ignoring the temporal information of the sequences. The method was constructed
this way to allow for local user interaction.
It is plausible to assume that the framewise matching will lead to not only

correct correspondences. This is no problem for a supervised operation of the
feature matching. However, when applying the pipeline to a whole sequence in an
unsupervised way, it would be beneficial to still include a temporal regularizer. Here,
we present an outlier detection method that can be used as a post-processing step to
the aforementioned methods without interfering them.
The temporal connection between frames is mediated by the tracks tm that

usually appear individually in a set of consecutive frames {Tj, . . . , Tj+n}. Hence,
for each frame Tj we can remember the assignment of a track tm to a landmark
lk. After the whole sequence T has been annotated we have a list of assignments
Am = [lu, . . . , lu, . . . , lv] for each track tm. The final landmark assignment to each
track tm will be the landmark that occurs most often in Am.

The presented outlier detection cannot be used to regularize the feature matching
to a better global optimum. Still, it is capable of detecting and correcting local false
assignments. Due to the continuity of tracks this outlier correction also helps to
annotate frames where the framewise auto-annotator failed.
Together with the frame matching and the frame wise feature matching we pre-

sented a method to register a large set of similar video sequences to a pointcloud. The
frame matching makes use of a temporal regularization over a similarity map. The
framewise feature matcher uses geometric relations of tracks in a frame to find robust
matches. The postprocessing step finally regularizes over time without interfering
the former mentioned steps. Given these steps we are now able to register a large
set of sequences using a small set of references.
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5 Experiments
In this chapter we evaluate the applicability and performance of the proposed
method. To this end, we examine the metric that is used for performance evaluation.
This is followed by the introduction of groundtruth generation. The remainder of
this chapter then evaluates the overall performance as well the single steps Frame
Matching, Feature Matching and Outlier Detection and finally relate these insights
to common difficulties of the scene in which the dataset has been recorded.
First we focus on the requirements on the performance measure with which we

reason about the useability of the presented method. The presented semi-automatic
registration method has been developed for the registration of video sequences to
a pointcloud in order to generate grouthtruth like depth or optical flow. Manual
registration is a labour-intensive task and as such is very time-consuming, such that it
is adviseable to automate as much of the workflow as possible. Hence, we ultimately
want to prove a speed-up in the registration process over manual annotation.

We start with the time consumption of manual annotation as proposed by [15].
Using manual annotation, it takes approximately two minutes per frame to register the
frame using control points. Each of the sequences presented in 2.1 has approximately
10000 frames. Not all of the frames need to be annotated due to the feature tracks
that persist in between several frames. Experience shows that it is sufficient to only
consider every 20th to 50th frame, corresponding to 250 frames that need to be
annotated per sequence. Hence, for one sequence, we need approximately 7 h of work
– one working day. If one person were to annotate all the sequences, this person
would be employed for one year. For the developed method this means that an error
rate of 50%, which is very high on an absolute scale, would reduce the workload of
one person by half a year. This would already be a huge advantage regarding time
consumption.
The proposed method is semi-automatic. This implies that we expect human

intervention in parts of the sequences. In order to prove significant time savings
we need to count how many of the total frames are still required to be manually
annotated. Hence, we need a performance measure that is capable of comparing the
automatic annotation results to human annotation results and tell apart good from
poor annotations. The way in which manual annotation (groundtruth) is created is
going to be discussed later. In the following, we first want to focus on the mentioned
annotation quality measure.

Performance Measure The central requirement for the proposed annotation method
is that annotations resulting from manual interaction and annotations made using
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this method exhibit the same accuracy in groundtruth generation. Groundtruth will
be generated by reprojection (cf. 2.2), such that the key parameter is the camera
pose that is used for reprojection. To this end, we compare the obtained camera
pose of manual and automatic annotations of the very same frame with the following
measure.
The pose pi for any frame i is estimated by minimizing the re-projection error

between annotated landmark points (3D) and the corresponding feature points (2D)
as given in equation (3.4) on page 20 which is implemented as a least-squares problem.

Camera poses pi are subject to uncertainties. These uncertainties can be a) system-
atic or b) measurement errors. Systematic errors arise due to mispicked landmarks
or due to biases of the image feature tracker. Measurement errors on the other hand
occur in the measurements using LIDAR or due to image noise leading to different
track positions and can be considered to be Gaussian distributed [15]. Systematic
errors occur in both groundtruth pose and automatic annotated pose because they
are obtained using the same frames with same tracks and same landmarks. We
compare the difference of both poses in which the same systematic errors will vanish
anyway. This implies that we can expect processes dominated by Gaussian errors in
the camera poses. It also suggests that neither the groundtruth pose nor the pose
obtained by automatic annotation can be considered exact.
Furthermore, we can expect different uncertainties scales for different feature

correspondences. Hence, for frames with a smaller number of correspondences or a
more ambiguous constellation (co-planar points) we would expect a higher uncertainty
also for the groundtruth pose. Naturally, the deviations between groundtruth and
annotated pose will be higher in this case. This shows that we cannot expect the
same scale of errors in all frames.
Thus, simply comparing two poses by euclidean distances in terms of position

and rotational vector would induce a twofold problem: 1) Comparing rotations and
translations independently of each other is not sufficient, because the values correlate
2) The different scales of uncertainties due to different feature correspondences would
not be taken into account .
As suggested by [4] we address this by using the Mahalanobis Distance as given

in equation (3.16) on page 24. This measure normalizes the deviations using a
covariance matrix Σ, thereby taking correlation and different uncertainty scales into
account. We call values obtained with the Mahalanobis distance consistency values c.
These are used as our central quality measure. Here, small consistency values denote
a good match and large values mark a poor match.

Since pose uncertainties can be considered normal distributed, values of more than
three unit-distances (3c) denote inconsistent matches. In the latter case, we can be
very certain that the pose deviations stem from wrong annotations and not from
measurement uncertainties anymore and hence consider these annotations as false or
outliers. Pose deviations by less than 3c can be considered insignificant and cannot
be distinguished from deviations due to measurement errors. Therefore, we take
these deviations to be consistent with the groundtruth pose and call them inlier.
Comparing consistency alone is not sufficient because consistency values are
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normalized values and cannot be interpreted without the underlying covariance
matrix Σ. In the following we refer to the diagonal entries as σ denoting the
precisions, which is equivalent to the standard deviation in each component. The
precisions are given by σ =

√
tr(Σ).

Two arbitrary camera poses can still be consistent to each other with sufficiently
large values in Σ. This is the case for instance if both camera poses deviate by 0.5m,
but show precision values of 1km. Naturally, these poses are highly consistent within
their uncertainties. Hence, consistency values are only meaningful if the underlying
precisions are small enough with respect to the scene and exhibit similar values with
respect to automatic annotation pose and groundtruth pose. During evaluation, we
have to make sure that this requirement is met.
The pose estimation has been implemented as a least-squares problem and was

modeled using the Ceres Solver [1]. It ships with a covariance analysis feature,
directly exposing the covariance matrix Σ which corresponds to the optimized pose.
For the observation uncertainties we set Σy = 4 · I corresponding to a standard
deviation of 2 px. To filter obvious outliers, we solve equation (3.4) using a RANSAC
scheme. Here, we set the inlier-region to 5px and are sampling twice times the
number of available correspondences. More information about pose estimation and
covariance analysis can be found in section 3.2 on page 20 and subsequent sections.

With the Mahalanobis distance, we have found a way of comparing two annotations
in a statistically sound manner, yet one problem remains due to the ambiguity of the
chosen pose parametrization. The rotation angle α of the pose (cf. equation (3.9) on
page 22) can only be determined up to the periodicity of 2π. The same representation
of the rotation matrix can also be attained by flipping the rotation axis and rotating
by (2π − α). We can see that an arbitrary number of representations exists for the
same rotation using the angle-axis representation. This should be illustrated by the
two poses (0, 0, 0, 0, 0, π) and (0, 0, 0, 0, 0, 3π), both representing the same pose with
a rotation around the z-axis by π. If we choose variances to be 0.01rad, these two
poses would be highly inconsistent to each other although they represent the very
same pose.
In order to compare two such poses using the Mahalanobis Distance, we have

to normalize the rotational part first. The discussed ambiguity can be resolved
by calculating the rotation matrix representing the present rotation. The matrix
of such a unitary mapping is unique. Re-calculating the angle-axis representation
from this unique matrix always leads to the same results, thereby normalizing the
representation.
The covariances Σ (uncertainties of the camera pose) obtained from covariance

analysis of the least-squares problem are not affected by this normalization because
both normalized and unnormalized poses correspond to the same solution in terms
of the objective function. Hence, the jacobian matrix is equal in equation (3.17) on
page 25 and therefore the uncertainties are equal.

In summary, we have discussed the performance metric that is used to classify the
annotation results. We chose the Mahalanobis Distance as a measure of consistency c.
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Consistency in our case encodes how likely two obtained camera poses originate from
a true underlying pose. Using this metric, we can compare automatic and manual
annotations by comparing the obtained camera poses. This leaves us with the need
for a means to generate groundtruth which will be discussed in the following.

Groundtruth In order to evaluate the overall performance of the proposed registra-
tion method it would be beneficial to have every sequence attached with groundtruth.
However, this would require all sequences to be manually annotated and would render
the proposed method useless. Hence, for quantitative evaluation, a representative
subset of the sequences was chosen. The selected subset is illustrated in figure 5.1
on the next page.
The subset contains sequences for both driving trajectories, comprises different

lighting conditions like strong sunlight with shadows (0_0059, 0_0068) and also
different weather (0_0013). Besides, it includes sequences from two different seasons.
This covers most of the challenge requirements imposed on the dataset.

Prior to any annotation, we assume a given set of tracks established between
frames. In the following, we present the generation of such tracks.

In order to find interesting points in a frame, an eigenvalue cornerdetection method
is used [26]. If an interesting point has been found, it will be tracked through
consecutive frames using template matching. The patch scores are computed using
pixelwise squared absolute difference, with a patch size of 21×21 and a search window
size of 31× 31. The parameter selection for the eigenvalue cornerdetection heavily
depends on the sequence setup. Due to the different requirements of the dataset, a
common choice for parameters in the feature detector is not possible. In order to
guarantee high-quality tracks in all sequences, the parameters are fine-tuned. This
is done as follows: From the introduction, we learned that the main task is to find
window corners in target frames. Hence, the selection of the parameter is fine-tuned
such that tracks are detected continuously around these window corners.

Following the tracking step, we establish a 2D-to-3D correspondences. This literally
happens by hand-picking the correspondence according to visually well distinguishable
features, such as window corners. The selection is done with a graphical user interface
[15] rendering the tracks (2D) and landmarks (3D) clickable. Using these manually
generated correspondences, the camera poses can be calculated, finally yielding the
human-annotated groundtruth pose for each frame.

So far, we have reasoned about the requirements on the performance metric with
which we evaluate our method and concluded that the notion of consistency compares
results in a statistically sound manner. We then showed how groundtruth is created
in order to compare the results using pose consistency.
The remainder of this chapter is organized as follows. An overview of the per-

formance of the proposed annotation method is given in section 5.1 on page 44.
There, we assess the general usability by applying the method to the set of test
sequences introduced in section 5 and show that the requirements on the performance
metric are met. Besides, we address general limitations of the method in section
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Figure 5.1: Illustration of the six sequences used for quantitative evaluation and their
properties.
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5. The subsequent sections 5.3, 5.4 and 5.5 evaluate the individual steps feature
matching, frame matching and outlier detection by deriving initial requirements for
the feature matcher, analyzing whether the frame matching meets these requirements
and demonstrating the improvements of the outlier detection on the global solution.
Finally, we discuss scene and sequence-related difficulties in section 5.6 on page 65.

5.1 Performance Evaluation
This section discusses the overall performance of the developed method and reasons
on general limits. First, we show the applicability of the performance measure
Consistency by assessing the related precision values σ. The performance overview
will be given by reporting the consistency value distribution, thereby illustrating
how many significant pose deviations are observed by applying our method to the
test sequences. The remainder of this section discusses the limits of the method that
are already apparent in the annotation result.
The following evaluation was made with respect to the test sequences that have

been manually annotated to provide groundtruth, as has been explained in the
introduction. For each frame pair, the information about consistency, precisions,
number of available tracks etc. have been acquired and are saved as one datum.
The data points presented here do not contain frame pairs where no annotation was
possible. The failure of auto annotation can occur for instance due to a low track
count of either reference or target frame or if the pose estimation and covariance
analysis fails on that given frame pair. In this case, the method signifies to the
user that auto-annotation failed. We do not consider these cases here as they would
require manual intervention anyways.

Consistency Check We learned from the beginning of this chapter that using
consistency as a performance measure brings along requirements on the related
precision values σ, hence we gauge the precision value distribution in the following
discussion.
We require the precision values to scale to the scene and that the precisions of

groundtruth pose and auto-annotated pose exhibit similar scales. An overview of the
precision scales can be gathered by examining their distributions. Translational and
rotational precisions cannot be represented as one scalar because they have different
units. The histograms shown in figure 5.2 on the facing page illustrate the respective
distributions separately for translational (σt) and rotational (σr) precisions. First,
we focus on the translational histograms. By comparing groundtruth and auto-
annotated precisions we find that the precision distribution of groundtruth proves
to be tighter with a tendency to smaller precision values. This is to be expected as
human annotations are considered to be less prone to errors and therefore lead to
less steep derivatives in the objective function, thus yielding smaller precision values.
However, both precision distributions show a significant overlap as the following
quartile ranges demonstrate. The consistency values are obtained by the translational
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Figure 5.2: The Mahalanobis Distance, giving rise to consistency values, depends
on the covariance matrix Σ. Consistency values, in our case, are only
meaningful if precisions show a comparable scale because the covariance
matrix is the sum of the camera pose covariances. We report the precisions
as
√
tr(Σ) of the manual annotation as well as automatic annotations.

Rotational precisions are given in rad due to ∆α ≈ tan(∆α) = ∆r/r for
small ∆α, allowing a quick estimation on point’s error. Again, we split up
the automatic results into inter- and intra-season sets. The top histogram
shows sum of translational diagonal, the lower histogram shows sum of
rotational diagonal entries of the covariance matrix Σ. Besides bins that
containing low and high precision values we see a comparable distribution
between manual and automatic annotations. Manual precision values
tend to smaller values, precisions of automatic annotations show heavy
tails. Tails of intra-season annotations are smaller, though. The precision
distributions show a overlapping region, suggesting that the consistencies
given in figure 5.5 on page 47 are comparable.
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Figure 5.3: Precision distribution of intra-season inliers (consistencies ≤ 3c) and
outliers. The distribution of precisions is similar between in- and outlier,
with the tendency to higher precision values within the set of outliers.
6% of the inliers have translational precision values > 0.5m and 21%
of the outliers respectively. This figure shows that the set of consistent
annotations are not solely made up by poor precisions and that precision
gives rise to differentiate between good and bad annotations.
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Figure 5.4: Correlation of translational and rotational precision values. Both precision
components show a strong correlation. This suggest that it is sufficient to
only take one of both components into consideration for further discussion.
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Figure 5.5: Evaluation of annotation quality, acquired by processing the whole
pipeline on the test sequences. This histogram shows the distribution of
pose consistencies which are obtained by calculating the Mahalanobis Dis-
tance between groundtruth and auto-annotation poses. Consistency val-
ues greater than 3c are considered to be inconsistent with the groundtruth
pose. Bar height resembles the proportion to all samples of their group.
Upper plot shows distribution near small consistency values, lower plot
shows the distribution tail. The results are split into inter- and intra-
season annotations, showing a shift to higher consistency values for
inter-season annotations and a heavier tail as well. The lower plot indi-
cates that most of annotations are made near the threshold of 3c. All
consistency values have been clipped to 100. Quantitatively, 70% of
the intra-season annotations and 32% of the inter-season annotations
fall inside the 3c range, in total consisting of 1082 and 345 samples
respectively.

47



5 Experiments

precisions of 0.14 m being within the 75 % percentile and 0.25 m being within the 75 %
percentile for groundtruth and automatic annotations, respectively. This shows that
the precisions of groundtruth and auto-annotated poses scale as expected. Assessing
the scale of precisions with respect to the scene can also be done using quartiles.
The majority of precision values are below 0.25 m. Considering that the selected
3D landmarks have uncertainties of a few centimeters and that many of them are
co-planar we see that the translational pose uncertainties scale reasonably within the
uncertainties of the scene geometry. The co-planarity can be seen in figure 5.1 on
page 43. Here, most of the annotated landmarks are drawn from the house facades,
which can be considered mathematical planes.

Next, we focus on rotational precisions. By comparing rotational with translational
histograms of respective groundtruth and auto-annotated pose we see a notable
similarity. We argued in the introduction that pose position and rotation correlate
which we can then expect for precision values as well. In order to show that the
translational and rotational precisions correlate, we plot rotational over translational
precisions in figure 5.4 on page 46. In this figure, we see that the precision pairs indeed
strongly correlate which proves our assumption and explains why the histograms
look very similar. This result also suggests that it is sufficient to only take one of
the precision components into account for further discussions.
We defined annotation inliers and outliers in terms of consistency as having

consistency values lower or greater than 3c, respectively. It is possible that inliers
only occur together with very poor precision values whilst all outliers only occur given
very small precisions. If this were the case, consistency could certainly not be used
as a meaningful measure to distinguish between good and poor annotations. To asses
this objection, we show the distribution of precision values conditioned on inliers
and outliers in figure 5.3 on page 46. From this figure we learn that the precision
distributions for inliers and outliers look similar and exhibit reasonable overlap.
Furthermore, we see a tendency to smaller precision values for inliers. The similar
precision distributions between inliers and outliers show that our initial concern
does not hold. Instead, we see the opposite of our initial objection: Inliers are more
credible as they show smaller consistency values together with smaller precisions.

The former discussion confirmed that different frame pairs imply different scales of
uncertainty which needs to be taken into consideration for a fair quality measure. It
has been shown that precision values are similar for automatically annotated poses
and groundtruth poses, which in turn shows that classified inliers and outliers not
only stem from mismatching precision values. In conclusion, we have proven that the
Mahalanobis Distance and the notion of consistency provide an applicable annotation
quality measure and that the use of such a more generalizing error measure is justified.

Annotation Quality Having proven the performance measure to work as expected,
we can finally discuss the annotation quality by applying the developed method on
the groundtruth-equipped test sequences.

We first give an overview of how well the method performs given the test sequences.
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We show the distribution of all data points that were acquired using the test sequences
and were reported to be successful annotations. The histograms can be seen in
figure 5.5 on page 47, with the overall distribution being denoted by all.

We can see that 39 % of all sequence pair samples fall outside of a Mahalanobis
distance range of 3c, denoting false annotations. Generally, we do not expect our
method to work seamlessly for all sequences and within all parts of a sequence due
to the requirements that have been imposed on the sequence dataset as explained in
section 2.1 on page 13. The sequences were recorded in order to serve as challenging
vision tasks and requiring the annotation method to work perfectly would render
the sequence set pointless in some sense. Instead, the proposed method was chosen
to be a semi-automatic method expecting the user to revise the results and correct
them in case of a failure. This suggests that the presented outlier rate is reasonable
and acceptable.

However, it would be beneficial to find limits of the method that can be used
a priori and a posteriori to detect whether annotations are good or bad, thereby
directing the user to parts of annotations that need more attention. Hence, in the
remainder of this chapter, we aim to assess the reasons behind the outliers and detect
limitations that are inherent to the annotation method.

We have reasoned before that the proposed method requires visually similar
sequences. From visual inspection of the sequence set (fig. 5.1) we can see striking
differences between different seasons. In order to show that different seasons have
an impact on the annotation performance, we separate the combined consistency
value distribution into intra- and inter-season pairs. The separated distributions are
featured in figure 5.5 on page 47.

By comparing inter- and intra-season annotations, we immediately see a correlation
of poor annotation quality with inter-season annotations. As it turns out, many
errors stem from the auto-annotation of inter-season pairs with 32% of the poses
being inconsistent in this context. This can also be understood by looking at figure 5.1
on page 43. Leaves fall from the tree, thus revealing objects behind the trees. This
has an impact on the visual correlation and influences the sensitivity of the coarse
alignment. We hence identify inter-season annotation as a serious shortcoming of
the proposed method, with the latter clearly lacking applicability here. We therefore
only consider intra-season pairs in the following discussion, if not denoted differently.

We have analyzed the annotation quality obtained by applying the proposed
method on the test sequences and shown that the method works well given the
challenges provided by the test sequence set. Nevertheless, there remain 30 % outliers
in the intra-seasons pairs. We aim to further understand the reasons behind these
outliers with respect to the capabilities of the annotation method in the following
sections.
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5.2 Limits
This section is dedicated to finding general limits of the developed annotation method.
We will use the obtained results as a posteriori features to indicate good and bad
annotations to the user.

In order to find the general limitations of the annotation method, we recall what
the method does: We register one frame with respect to another, requiring feature
points (2D) in both reference and target frame. Low annotation counts imply higher
numbers of possible annotation constellations. Hence, the number of features and
the respective number of made annotations need to be taken into account. Secondly,
we find initial pose estimates by determining the visually most similar frame pairs
for reference and target frames. Visual similarity depends on camera distance as
frame pairs that are too distant to each other do not have much in common anymore.
Hence, it is probable that these factors influence the annotation results. Therefore,
we want to understand whether the consistency values c exhibit a clustering with
respect to reference camera distance ∆T and the number of made annotations N .
Corresponding data is shown in the scatterplot in figure 5.6 on the facing page.
In this figure, we see that inconsistent points (c > 3c) are uniformly distributed

within the data points. Consistent samples, on the other hand, can be found at
low numbers of annotations as well as large camera distances between reference
and target frames. Contrary to our assumption, we see that we cannot find evident
indications in the consistency distributions of camera pose and number of annotated
tracks.
We can understand this from the following reasoning: Camera distances for the

presented datum points were the result of coarse matching. Hence, the distances
reported here heavily depend on the performance of the coarse matching step.
Therefore, these results can not be used particular well for a systematic examination
as we don’t have enough control over the results. We therefore pose the same question
in section 5.3 on page 54 again using a systematic variation on camera distances.
Another parameter which we can learn from are the precision values as they

are an indicator for the quality of the pose estimation. It is reasonable that for
comparable annotations these precisions should match as well. We want to compare
the uncertainty levels of the reference annotation and the target annotation. If the
target precision deviates much from the reference, then it is likely that something
has gone wrong. For comparison, the distributions of the ratios between reference
precisions σRt and target precisions σTt have been split up into inliers and outliers
and are shown in figure 5.7 on page 52.
Looking at both histograms, we see that the precision ratios behave as expected.

Clearly, most of the ratios lie between 0.5 and 2.0 with a peak around 1.0. Looking
at the inliers separately, we see that 50% of the values lie between a ratio of 0.98
and 1.25 denoting the first and third quartile within the inlier distribution. When
analyzing the same distribution for outliers, we see similar values lying between
0.98 and 1.64, respectively. Values greater than 1.0 denote values where the target
precision is greater, denoting a worse fit for the target annotations which sounds

50



5.2 Limits

−2 0 2 4 6 8 10 12
∆T [m]

−50

0

50

100

150

200

A
ss
ig
nm

en
ts
N

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
Consistency c

Figure 5.6: In order to understand the cause of outliers in intra-season annotations,
we dissect annotation quality with respect to extrinsic parameters refer-
ence camera distance ∆T and number of annotations. The consistency
is color coded and has been clipped at 4 for better visualization. The
marginalization of outliers (consistency > 3c) is shown in the respective
histograms. Note the parabolic slopes as well as the vertical line origi-
nating from clipping camera distances No true coherence can be found
here, as bad and good consistency values are scattered uniformly within
their distribution.
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Figure 5.7: Assessing the useability to discriminate outliers using absolute precisions
values. The ratio between reference and annotation pose precision is
shown on the abscissa. The histogram has been split up for in- and
outliers. One can see that the majority of pairs have ratios between 0.5
and 2. Outliers show higher values for larger ratios. However, in- and
outlier show similar distributions giving no hint on discrimination but
showing a correlation between reference and target precisions.

reasonable. The figure proves our assumption about similar precision values between
reference and target poses.

Comparing both distributions, we see that they extend similarly. Thus, classifying
outliers by sole use of this distribution is not possible without also cutting away
inliers. This concludes that precision values between target and reference correlate
but that the precisions ratio provides no way of classifying outliers.
We continue the examination of the precision values. In the introduction, we

argued that the number of annotations N and the reference camera distance ∆T
also should have an influence on the precisions which we aim to analyze now. We
report the precision values σt of each annotation pair in a scatterplot with respect to
N and ∆T , similar to the former discussion about consistency values.
We first focus on the clustering depicted in the upper scatterplot. Precisions σt

comparable to groundtruth precisions (≤ 0.1m) extend up to the clipping distance
of 10m. This shows that the camera distance ∆T seems to have a negligible
impact on the precision values. Looking at the number of assignments N , we see
that the precision increases gradually with decreasing N . The 25% percentile for
precision values equal or better to groundtruth precisions lies at a number of 60
assignments, thus indicating a clear dependency of the precision values σt on N . We
can understand the two observations as follows. The impact of 3D positional errors
on the reprojection error decreases with increasing distance to the points. Normal
distributed uncertainties can be reduced by increasing the amount of samples. This
suggests that the dominating error process on the reprojection error is the tracker
positional noise with negligible influence of the 3D positions. This complies with our
observations made.

Having identified the amount of annotations N as being the dominating parameter
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Figure 5.8: Influence of number of assignments N and camera distances ∆T on the
precision values. The upper plot shows clustering of precision values.
The points are color coded with respect to precision values as shown in
the colorbar. Camera distances have been clipped to 10 m, leading to the
vertical line on the right. The lower plot shows dependency of precision
values σt with respect to number of assignments N . Three branches are
evolving into which functions of the form s0/

√
N + 1−N0 have been

fitted.
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on precision values, we further dissect this dependency by showing the precision
values σt plotted over number of assignments N which can be seen in the lower plot
of figure 5.8 on the previous page. The most striking feature of this plot is the clear
convergence to small precision values with high numbers of annotations N , which we
conjectured from the upper plot already. Despite this fact, we see a few branches
evolving as reciprocal curves illustrated by the supporting lines. These branches have
the same cause as the parabolic slopes in figure 5.6 on page 51. In the context of
uncertainties the reciprocal curves stem from taking the mean of random variables,
thereby scaling uncertainties u ∝ 1/

√
n with the number of samples n. In fact, the

lines are fitted to each branch using following equation.

u(N) = u0√
N + 1−N0

(5.1)

According to the figure, the reciprocal branches indeed obey the given proportionality
up to a shift N0, which is known to be valid for normal distributed errors. This indi-
cates the validity of the assumption of normal distributed errors in the introduction
of this chapter.

In the former discussion, we have identified the number of annotations N to have
a significant impact on the precision values. Furthermore, we have shown coherence
to a proportionality that we know is valid for normal distributed errors, indicating
that the camera pose uncertainties indeed stem from normal distributed errors.
In this whole section, we have found a justification for the chosen performance

measure consistency by showing that this relative measure shows no significant
correlation with precisions, denoting that inliers and outliers classified via consistency
is a true classification. On top of this, we identified a further indication that the pose
uncertainties are normal distributed by showing a strong coherence to the number of
assignments N .

Finally, we gave an overview of general limits of the annotation method but were
not able to find satisfying and clearly inherent restrictions of the proposed method.
Up to now, we only examined the annotation method as a whole, hence considering
the system as a black-box. This black-box consists of three steps that each have an
impact on the overall performance. In the following sections, we will analyze the
three steps pose refinement, pose estimation and outlier detection in section 5.3, 5.4
and 5.5 individually.

5.3 Feature Matching
In this section, we examine the camera pose refinement step separately. This step
is the central step within the whole pipeline. We aim at finding its limits and
requirements. These limits and the isolated performance analysis can later be used
to discuss the effects of coarse alignment and outlier detection.
In the former discussion, we analyzed the whole pipeline. Hence, the choice of

reference and target frames was determined by coarse alignment. We now want to
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impose systematically chosen reference/target frame pairs to the pose refinement
pipeline, thereby retaining full control over the similarity and camera distances of
both reference and target frame.
This experiment has been conducted by picking a small subset of frames from

all sequences and using them as reference. A datum point for each of the frames
is acquired by stepping away from the reference frame and thereby systematically
recording the frame difference, camera distance and annotation quality. For both
forward and backward direction, we use 20 steps with a step-width of 15 frames. We
systematically step away from a frame starting with complete visual similarity. This
effectively requires the initial frame distance to be 0 m. We can only ensure this by
choosing frame pairs from the same sequences. Hence, the choice of frames has been
limited to intra-sequence pairs.
We first give an overview by showing the annotation results with respect to the

scene, thereby also illustrating the scene coverage of reference frames. The reference
frames have been chosen to cover different aspect of the scene. This includes (a) the
curve (b) frames within two houses and (c) frames in between two columns. Situation
(a) includes camera motion with rotation , (b) includes highly repetitive structures
and co-planarity of landmarks and (c) shows frames with mixed landmarks. This
selection covers different properties of the scene, thereby giving a good cross-section
of the difficulties. The distribution of (x, y) positions of the camera pose with
color-coded consistency c are shown in figure 5.9 on the next page.
Qualitatively, we can see that the annotation results exhibit good consistency

values if the target frame is still near to the reference frame. This shows the general
applicability of the refinement step but suggests that it needs a good prior to the
reference scene in order to work properly.
Next, we assess this observations quantitatively. This discussion has been post-

poned in section 5.2 on page 50 where we were interested in the clustering of
consistency values c with respect to number of assignments N and the camera dis-
tance ∆T , but were unable to find a significant correlation. Using the systematically
acquired dataset, we construct the same scatterplot again by showing the color-coded
consistency plotted with respect to ∆T and N . One can reason that the number of
false annotations also affects the annotation quality c, hence we also plot the error
rate against the number of annotations N in a further plot. The error rate is the
number of false annotations divided by the total number of annotations. Both plots
can be seen in figure 5.10 on page 57.

Focusing on the top plot, we see a clear dependency of consistency c with respect on
the camera distance ∆T . Here, we see that good consistencies are only obtainable by
camera distances of less than 3.2 m within the 75% percentile and 5.5 m for the 95%
percentile. This agrees with figure 5.6 on page 51 which shows a similar distribution.
For the number of assignments N we can find that good pose consistencies can be
achieved for low as well as high N . This implies a less pronounced dependency on
consistencies c. A lower limit can be identified to be 49 annotations considering
datum points above the 25% percentile. Now looking on the error rate plot below
shows that it is necessary to maintain an error rate of less than 20% to achieve good
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Figure 5.9: Bird’s eye perspective on the annotation results obtained by stepping away
from reference frame. The consistency is color coded. Consistency was
calculated between groundtruth pose of target frame and the annotation
made for the target frame. One can see good consistencies near the
reference frame, evenly dropping to bad consistencies before and after
the reference.
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Figure 5.10: Systematic approach on assignment quality. Both plots show the distri-
bution of pose consistencies obtained by fixing a reference frame and
annotating target frames evenly spaced steps away from the reference,
using the same sequence. Consistency is color coded. The top plot
shows the distribution given the camera distances ∆T , bottom plot
shows the error rate. One can see that good consistency values are only
obtained for number of assignments larger than 40 and camera distances
not more than 5 m away. Satisfying annotation qualities can only be
achieved with error rates less than 20 %. This plot shows practical
limits on camera distances between target and reference frames and the
number of required annotatable tracks.
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Figure 5.11: Extends figure 5.10 on the previous page by the dependency of inter-
frame-stepping.

annotation results. We see a region below a count of 50 annotations where the error
rate increases notably. This complies with the limit on annotation count we have
identified in the plot above.

We understood that annotation quality depends on frame camera distances. This
entity is not known a priori as groundtruth would be required. Hence, this cannot
be used directly as an indicator for the quality of annotation. However, we can
use this information by finding situations where the frame matching recurringly
shows higher distances than 3.2 m. If regions in the scene show such recurring higher
distances then the annotation will be likely to be poor in this case. Hence, the
further discussion about this will be postponed to section 5.4 and section 5.6.

Another parameter that is relevant for frame matching is the inter-frame stepping.
This parameter defines how many frames should be ignored in between two frames
that are to be annotated. We investigate how many frames the frame matching
step can be away from the true frame to still work. To this end, we report the
color-coded consistency with respect to the frame number difference and the number
of annotations N . The resulting plot is shown in figure 5.11.

We see that the frame stepping distance has a coherence with the consistency c. At
first glance, the plot suggests that the annotation is symmetric to the frame difference.
However, the 50% percentiles for frame differences higher than 0 and lower than 0
are found to be -45 and 67, respectively, where the choice of percentiles effectively
resembles the interquartile range of the whole dataset. We see an asymmetry for
annotations before and after the reference frame. This asymmetry can be understood

58



5.4 Frame Matching

from the reference frames that have been placed at the boundary of available
groundtruth. In these positions, we cannot find annotations in the backward direction
due to missing tracks. Hence, these positions will not contribute annotations behind
the reference frame, thereby reducing the number of annotations in the negative
branch. From the discussion about frame differences we know that we should not be
more than 50 frames away from the true frame.

5.4 Frame Matching
In the former section, we have identified general limits on camera distance or number
of assignments in order for the feature matching to work properly. Our method
consists of Frame Matching followed by the frame wise feature matching. We now aim
to verify that the frame similarity requirements necessary for the feature matching
are provided by the frame matching. In addition, we aim to show the useability of the
developed inference-based method. The diagonal path through the similarity map is
the baseline here. In this context, we show the improvement of the inference-based
frame matching over the naive diagonal and unary max alignment as mentioned in
section 4.3 on page 33.

The underlying quality measure of this chapter is as follows. We intend to compare
how well the frame matching works. Goal of the implemented frame matching is
to find the visually best matching reference frame for each target frame. We have
seen that visually similar frames possess a similar camera pose. Therefore, as quality
measure, we define the camera distances ∆T . These distances are obtained using
the test sequence groundtruth poses. For each assignment (Tj, Ri), we record the
corresponding camera distance ∆T . In principal, we would have to compare the
rotational part as well. However, most of the camera trajectory is straight movement.
Here, the rotational components don not change. Only when driving the curve, we
encounter bigger changes in the rotation vectors. We will find a justification in
section 5.6 on page 65 such that we can neglect the rotational part for the comparison
of the methods.
We first focus on the general improvement of the graph inference step compared

diagonal and unary max. For all test sequences, we used these three methods and
compared their correspondences in terms of the camera distance. The histogram of
all camera distances is shown in the top plot of figure 5.12 on the following page.
We see that the diagonal approach exhibits an initial distance of over 13m for the
75% percentile. The unary term alone produces better results with 5m in the same
percentile. However, we see a heavy tail similar to diagonal. For graph inference,
we find that 75% of the values are smaller than 3m whereas the 95% percentile
can be found at 10m. These observations shows that the graph inference produces
matchings with a less pronounced tail and proves the higher usability with respect
to the former methods.
We now compare these results to the requirement for the feature matching that

we have identified in section 5.3 on page 54. From figure 5.10 on page 57, we learned
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Figure 5.12: Error distribution of coarse alignment step as described in section 4.3 on
page 33. The error is computed using the difference of camera position
of true and suggested pose. The upper plot shows the comparison
between our method, unary max and diagonal path. The narrow error
distribution of our method significantly drops to small values for devia-
tions higher than 10m. The naive diagonal approach shows a uniform
distribution within the range of 20m. Compared to unary max, our
method is much less heavy-tailed in error distribution. The lower plot
shows the influence of inter-frame stepping of the coarse alignment.
It can be seen that the errors for different inter-frame steppings have
similar distributions.
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Figure 5.13: Consistency distribution for frame matching conditioned on inliers ∆T ≤
5m and outliers.

that the refinement step ideally requires camera distances of less than 5 m to work
properly. This is not completely guaranteed by the coarse alignment as approximately
15 % of all frame pairs exhibit distances greater than that.

This suggests to find whether the higher frame distances truly have an impact on
the annotation results. We therefore condition the samples on inliers ∆T ≤ 5 m and
outliers and report the consistency distributions of both subsets in figure 5.13.

Here, we see for inliers that the 75%-percentile lies at 2m and for the 95% percentile
it lies at 4m. For the outliers we find the respective percentiles at 11m and 33m.
This clearly denotes a shift towards higher and inconsistent auto-annotations which
implies that the reasons for the annotation outliers presented in section 5.1 on page 44
can also be found in insufficient pose estimations.

We have shown that a large camera distance in the frame-matching step correlates
with poor annotation quality. We now assess whether we can use this information in
order to warn the user about poor annotations. Looking on the outlier distribution,
we see that 58% of the samples are inliers in terms of consistency. This shows that we
would throw away many useable annotation pairs if were to omit all frame matchings
with camera distance larger than 5m. In addition , the camera distances are not
known a priori. To use this information we have to find locations in the scene or
sequences where we consistently find poor frame-matching results that meet these
requirements. Concluding, the found correlation alone is not sufficient to detect
outliers but we have to resort to a more scene-agnostic examination, which we do in
section 5.6 on page 65.
In the performance overview in section 5.1 on page 44 we found that the inter-

season annotations in general yield poor performance and reasoned that the frame
matching step fails at this point. In order to prove this assumption, we show the
camera distance distributions ∆T for intra-season and inter-season annotations
together with two example similarity maps in figure 5.14 on the next page.

From this figure, we learn that frame matching in different seasons has a significant
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Figure 5.14: Camera distance ∆T of frame matching conditioned on intra and inter-
season sequence pairs. We see a significant shift towards large camera
distances for inter-season matching. Two examples for similarity maps
are shown on the left hand side. The upper plot corresponds to sum-
mer/summer pair, lower plot corresponds to winter/summer pair. A
path with higher contrast can be seen in the summer/summer similarity
map.
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effect on the matching quality. We see a drastic shift towards higher camera distances
for inter-season annotations. This shift explains why the annotation quality for inter-
season sequence pairs generally shows poorer results. By looking on the example
similarity maps we see that for a summer/winter pair the contrast is far reduced.
It is hard to find a viable track at all. Hence, the proposed method should only be
applied to sequences from the same season as was reasoned before.
Another feature of the frame matching is the frame subsampling as explained

in section 4.3 on page 33. There, we reasoned that many of the frames provide
redundancies and concluded that it is sufficient to skip frames. The more frames are
skipped, the more unlikely it is to find a good match. We want to assess the influence
of frame subsampling on the coarse alignment quality in the following discussion. To
this end, we apply frame matching to a list of subsamples [25, 50, 100, 200]. The
number corresponds to how many frames are skipped between to consecutive frames.
The steppings were chosen to lie around the limiting case of around 100 frames
identified in the former section. The resulting error distributions can be found in the
lower plot in figure 5.12 on page 60.

Comparing the different results, we see a slight tendency to higher frame distances
for bigger step sizes. All in all, the error distributions look similar for all step sizes.
Considering again the assumed velocity of 8 m

s , we understand that the frame distance
for a stepping of 25 frames should be at maximum 0.5 m and 4 m for a stepping of
200. Half the frame distance assumed by driving speed d = v/f is considered: if a
frame deviates further away than half of d, the matcher is expected to find the next
or previous frame instead. Given these observations, we find that the resolution of
coarse matching does not depend so much on the frame stepping but is dominated
by the limited resolution of the similarity map and the principal frame distances
between different sequences.

From figure 5.11 on page 58, we learned that we see a limit when employing frame
steppings above 100 frames. Since precision is not getting drastically better by
choosing smaller step sizes, this suggests choosing a stepwidth of 50 frames as a good
compromise between processing speed and resolution.

5.5 Outlier Detection
In section 4.4 on page 38, a postprocessing step has been proposed to correct outliers.
The pose consistencies that have been presented in section 5.1 on page 44 were
calculated using annotations that result after the postprocessing step. Here, we
assess the impact of postprocessing on the quality of annotations.

To this end, we calculate the pose consistencies in the following experiments just as
in section 5.1 on page 44. This time, however, we omit the postprocessing and present
consistencies that are obtained only by taking the annotations that were found by
graph-matching. The annotation pipeline is again processed for the presented test
sequences. The resulting consistency distribution is shown in figure 5.15 on the
following page.
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Figure 5.15: Comparison of consistency distribution between frame-wise annotations
and annotations obtained after postprocessing step. Entries labeled with
post correspond to the values shown in figure 5.5 on page 47, values with
auto correspond to intra-frame annotation results. Results obtained by
postprocessing, denoted by post, show a tendency to smaller consistency
values. This can clearly be seen for values larger than 9σ, as the number
of occurrences drops from over 20% to little more than 5%. This figure
shows an impact of the postprocessing result on the overall performance.
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Comparing the obtained consistencies, we find a decrease in consistency values
using the proposed postprocessing method. The outlier rate drops from 61% to 39%
in the overall performance and from 53% to 30% for visually similar sequence pairs.
Thus, postprocessing corrects approximately 1/5th of the annotations. This result
shows that the postprocessing step is not just a refinement to the results but turns
out to be a vital step for an unsupervised pipeline workflow.
Using this observation, we look at some results retrospectively in order to under-

stand them better. In the evaluation of the isolated feature matching step, we found a
limit of 3.0m for initial camera distances to work properly. This partially contradicts
figure 5.6 on page 51 where we found the parabolic slopes. These slopes consistently
denote good annotation qualities which suggests that high-distant annotations are
not solely achieved though intra-frame annotations but are supported through a
knock-on effect of the postprocessing.

5.6 Scene & Sequence Related Difficulties
From the former sections, we learned about general limits to the application of
the proposed annotation method. In this context, we examined the influence of
common parameters like camera distance, number of assignments and precision on the
consistency values. We furthermore examined the individual step feature matching
and compared the identified requirements to the prior step frame matching. We found
that the requirements for feature matching are not completely met. We showed for
all of these indications that they have an effect on the annotation quality. However,
all indicators were not feasible to clearly tell apart good from bad annotations, as
there always was a significant overlap. In the following we want to find whether
combinations of the former discussed indicators can be used as a a priori criterion
for outlier classification.
Generally, we learned that we have to expect different quality of annotations for

different sequences. One reason for this is found to be scene-related constraints. Not
every part of the scene has a very dense point cloud. Some parts also show occlusions
of potential landmark candidates. These scene-related difficulties are the subject of
the following discussion.

We expect scene-related effects to occur locally and coherently. Hence we plot the
consistencies c with respect to their spatial position in the scene and marginalize the
distribution on in- and outliers. In addition to consistency, we report the precision
values again. We also intend to understand the impact of frame matching. Hence, we
surround the consistency scatter points with gray circles whose size is proportional
to the reference camera distance. Interesting points are labeled. The resulting plots
can be seen in figure 5.16 on the following page. To give a better insight on the local
properties of the scene, we also show sample frames for the corresponding points of
interest in figure 5.17 on page 69. Besides consistency, we examine the number of
annotations and the error rate which can be seen in figure 5.18 on page 70.

We first focus on the consistency plot. The most striking mode in the distribution
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Figure 5.16: Bird’s eye perspective of the annotation results within the scene. Each
point corresponds to the (x, y) components of the groundtruth camera
positions of it’s respective target frame. Each point is bedded on a
gray circle denoting the distance to it’s reference frame. The spatial
scales are not equidistant. The six boxes denote the houses from which
we draw most of the annotatable tracks. The general area covered by
the plot corresponds to 70 m in width and 50 m in height. Plots from
top to bottom show the distribution of inliers and outliers, color coded
consistency c and color coded precisions σt. Points of interest have been
labeled in the image. This figure demonstrates the presence of local
coherences on the annotation quality within sequences and the scene.
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of outliers can be seen at position (b). Here, we not only see a high count of
outliers but also a consistent decrease in the count of inliers. Both driving directions
exhibit this behaviour. We first look at the driving direction from (a) to (d). The
corresponding example frame in figure 5.17 shows that this corresponds to a position
where the vehicle is in between one column of houses. Many of the available tracks
start to disappear as the window corners walk out of view. The next left house is
covered by a tree so the only region where new tracks become available are on the
right side. The other driving direction runs out of possible tracks here as well, since
this is the last part of the scene where reference tracks exist for the given driving
direction. The low track count is confirmed by the track figure 5.18. We already
identified objections to the annotation for low track counts in section 5.3 on page 54.
These present observations confirm that this part of the scene is a point of failure
due to sparse reference and target tracks.

Considering the initial guess of the frame matching, we see a small distance to the
reference frame. This shows that the number of outliers can be attributed to the
feature matching step. We can understand this by looking on the constellations of
feature points. In both cases, we can only rely on tracks located on house facades
parallel to the street. These points are arranged highly repetitively on a grid and
are highly co-planar. Therefore, a translation parallel to the street leads to a very
similar viable geometric constellation for tracks. Hence, the feature matcher can
confuse the tracks and annotate a completely different set of tracks in the target
frame. This systematic shift cannot be detected by RANSAC either, because the
pose estimation would yield precise results given the completely wrong annotations.
This can also be observed in the precisions presented in figure 5.16 where we observe
very low precisions in the area around (b). We see that we can identify a systematic
mismatching due to highly repetitive patterns in this region of the scene.
In contrast to the co-planar patterns, we see another constellation of tracks in

(a). Here, we are looking on two house facades that are perpendicular to each other.
Considering the low track count, we still see good annotation results at this point.
The small consistency values might be a consequence of the high precision values.
However, looking at the low error rate shows that the annotations are predominantly
correct. Hence, the precision is the best we can get regarding the low track count.
From these observations we can learn two things:

First, in this context, the absolute pose distance assumes higher values. Nonetheless,
good annotation results in terms of error rates have been achieved at this point.
Our quality measure consistency shows consistent results here as well. Hence, the
examples (b) and (a) confirm the need for a precision-scale invariant quality measure.
Second, the constellation of feature tracks has a big impact on the overall performance.
In the curve, we see non-co-planar patterns. These give rise to less ambiguity in
the possible point constellations. We learn that the choice of tracks should be as
diverse as possible, such that many non-co-planar objects are to be annotated. This
provides a better automatic annotation result but also improves the quality of the
pose estimation in general.
The second largest mode in the outlier distribution can be seen in (c). We
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observe several camera paths that show consistently false annotations or consistently
good annotations, but nothing in between. We also observe higher reference frame
distances, denoted by the larger gray circles. This suggests that the reason for the
aggregation of outliers is also subject to sequence content. The lower camera path
consisting of consistent outliers origins from the annotation of the forward-directed
0_0055 sequence. This sequence reaches further into the end of the street than other
sequences in the same direction. In this case, the reference frame that is used for
annotation falls far behind the actual camera position, which can also be deduced
from the larger radius of the circles. From this case, we learn that the target sequence
must be fully contained in the reference sequence for good annotation results.
The sequences starting in (d) also contribute to the mode of outliers. We see

two paths that can be better distinguished in the other scatter plots. The complete
path we see belongs to 0_0013. It shows periodically good consistencies, abruptly
changing to bad consistencies and abruptly rising again. The target sequence in
these cases was recorded with wipers turned on. Wipers make all existing tracks
disappear. Hence, after each wiping event, a completely new set of tracks needs
to be found, thereby breaking the temporal connection between the frames. The
postprocessing makes use of majority votings for assignments. The disappearance of
all tracks at once highly affects the postprocessing step and causes the observed high
consistency value peaks.
The other path is sequence 0_0000 that has been annotated using the wiper

sequence. We see that between (d) and (c) no annotations could be established.
Looking at the gray circles, we see an increase in the radius for points that were
annotated. This denotes higher reference camera distance and suggests to take a
look at the similarity map which is shown in figure 5.17 on the facing page. From the
similarity map we deduce that the path through the map has been found properly.
However, the path is far away from being diagonal. This denotes a large speed
difference between both sequences. The speed difference can be best seen in the
error rate plot, where the points for the lower path are far more distantly placed
from each other. In this case, the frame subsampling has not been chosen well. The
camera distances between two of the subsampled frames are too large for the feature
matching to work.
One more thing that needs to be discussed is the annotation error rate that is

consistently high within the 75% percentile of 24% for consistency-inliers. In section
section 5.3 on page 54, we learned that feature matching only provides useable
results when the error rate is below 20%, which is slightly violated here. This shows
that during the outlier detection step we also capture a reasonable amount of false
annotations. Nonetheless, we see good annotation qualities all the way. To resolve
this contradiction, it is must be noted that the camera poses are estimated using
RANSAC, which is able to identify these outliers.

We can understand the error rate by revisiting the step. For each target track tm,
we collect all possible annotations that were proposed using the frame wise step. We
then choose the landmark that has a simple majority. Hence, once a track has been
assigned incorrectly, this annotation will remain in the set of candidates. This shows

68



5.6 Scene & Sequence Related Difficulties

(a) Curve (d) Wiper

(b) In between houses (b) Backward end

(c) Forward end Simiarity Map

Figure 5.17: Illustrative examples of frames which have a significant effect on the
annotation results.
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Figure 5.18: Extension to figure 5.16 on page 66. The plots from top to bottom show
error rate and number of assignments.
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that postprocessing is truly a crucial step and that it performs well by averaging
over time. We conclude that the requirement on locality of the feature matching is a
strong assumption and needs to be challenged again.

In summary, it could be shown that most of the inconsistent poses of intra-season
annotations found in figure 5.5 on page 47 are due to difficult parts in the scene.

5.7 Time Consumption
In the following, we take up the time saving discussion from the introduction of the
chapter again. We aim to assess the total required work that still needs to be done
when using the presented method. The estimates are obtained by extrapolating from
the test-set to the complete dataset and as such cannot give a precise quantification
but only a coarse overview.
From section section 5.1 on page 44, we learned that the proposed annotation

method produces approximately 68% useable annotations in the set of test sequences.
In the subsequent sections, we examined reasons for the outliers and identified two
main causes for inconsistent auto-annotations, namely poor frame matching and
generic scene-related as well as sequence-related difficulties.

In the context of frame matching, we could identify inter-season sequence pairs as
the root cause for poor alignments. In our case, this means that we have to provide a
reference sequence for different season and lighting conditions. We have 4 recording
days with 2 directions per sequence. Considering two light settings, namely day
and night makes another 2 sequences per day. This totals to 16 sequences that are
required to be annotated by hand in order to provide enough reference data.

From 200 total sequences we therefore are left with 184 sequences that need to be
auto-annotated.
Using the outlier rate of 32 % and the required time of 7 h per sequence we can

estimate the required time to 16·7 h for the reference sequences plus the remaining
outlier frames with 410 h giving a total of 410 hours.
So far, we assumed that each consistency-outlier frame needs to be completely

reannotated. From the former discussion, we also learned about the annotation
error rate. This error rate is determined with respect to the number of found
correspondences per frame-pair. Depending on the error rate, not all the 2D-
to-3D correspondences need to be reannotated. We analyze how many of the
correspondences are wrong in order to give a better estimate for the remaining
manual interaction. We can condition the results on consistency-outliers again and
find that the error rate is 32% within the 75 % percentile. This error rate gives an
upper estimate for 75 % of the outliers whereas for the last 25 % the upper estimation
can be attributed to a complete re-annotation.
We can combine these terms again. The time required to annotate the reference

sequences stays untouched with 16·7 h whereas we find that the remaining annotation
work reduces to 203 h, giving a total time consumption of 315 h.

In comparison to the required time for complete manual annotation of 1400 hours
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we save approximately 1084 hours or 135 working days and reduce the workload to
22 % of the initial required workload for complete manual annotation.
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In this last chapter we want to conclude our examinations of the developed method
and discuss how these results can affect future work. To this end, we first summarize
the obtained results.
We presented a method that can be used to bootstrap the problem of aligning

2D video sequences to 3D geometry that was successfully applied to generate the
reference dataset presented in [24]. First, coarse frame alignment of new video
sequences with an annotated sequence is done to estimate an initial pose of the
camera with respect to the point cloud. On average this pose has an accuracy of
3 m within the 75 % percentile. Using this pose as an initial guess control point to
feature track annotations are obtained by solving a graph matching problem. Results
indicate that this pose is consistent with the ones obtained by manual intervention
in 30 % of cases. After the post processing step that removes outliers, we see that
the performance is on par with manual annotation, resulting in a 5−fold speedup
from 420 min to 90 min minutes per sequence.
For the method to work, we do, however, require a complete manual annotation

for different times of year or lighting conditions. Concluding, we presented a method
that combines the best of two worlds: Quality assurance of manual annotations and
the speed of an automated technique.

The discussion about future work will be split up into specific improvements to this
method. The second part addresses quality assurance for the large-scale generated
groundtruth.

From the examinations we also learned about objections to the method. One was
found in the frame matching step. Here, in extreme cases we found that the frame
stepping was not sufficiently well chosen. From our preliminary experiments we
found that a constant mean velocity corresponding to the diagonal of the similarity
matrix has been sufficient in most of the times. Further experiments should pick up
the local estimation of the mean velocity as mentioned in section 4.3 on page 33.
This gives rise to a better estimation of the true path, even in a context where the
speed of the sequence is far removed from matching the diagonal path.
Another deficiency has been found in the combination of feature matching and

postprocessing. In our requirement engineering we concluded that we want to avoid
global regularization. However, experiments strongly indicated that regularization
over time is a critical factor. This can be seen in two facts. First, we identified
consistently high error rates in the annotations that contradicts the requirements
found in section 5.4 on page 59. Here, we concluded that postprocessing brings
noise into the annotations due to the unconstrained majority voting mechanism.
Second, we saw problems in images with high repetitive structures. A long-ranging
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regularization in this case can help as the ambiguities would be better resolved.
Hence, further work can be put into a graph matching that takes several frame pairs
into account. A more optimal solution would certainly be found by optimizing over
a whole sequence. However, this would once more contradict our requirements on
local manual intervention. Hence, finding a trade-off between regularization over a
frame-pair and a whole sequence should be considered.
The authors of [15] only evaluated their groundtruth pipeline on a very small

subset of all sequences, due to the time-scaling constraint that has been solved by
the method developed in this thesis. Therefore, we now need to compare the batch
generated groundtruth for useability.
So far we only compared camera poses for consistency, since this was the most

groundtruth-related result that could be used on a larger scale. In this context,
we compared our method against manual annotations. However, the question is
whether the manual annotations are already precise enough to generate high accuracy
groundtruth. Due to the lack of available data this question has not been addressed
so far.

Hence, the next step would be to generate groundtruth for all registered sequences
and compare the results. To this end, simple visual inspection of depth-to-visual
edges can be used. More quantifying approaches could be warping images using
the generated groundtruth and comparing images then in the visual domain. Here,
we can once more identify difficulties within the method in order to improve the
reference annotations. By incorporating these improvements we finally can ensure
high quality groundtruth generation on a semi-automated basis.
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